categorical data analysis for r-avoiders精品.pdfVIP

  1. 1、本文档共49页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
categorical data analysis for r-avoiders精品

Categorical Data Analysis (for R-avoiders) Christoph Scheepers Glasgow Intro Linear Mixed Models (LME)  Discussed in two (orthogonal!) contexts  Simultaneous generalisation of effects across subjects and items (better alternative to calculating min. F’ from F1 and F2, cf Clark 1973)  Providing adjustments (i.e. distribution and link functions) for a wider range of analysis problems, including categorical data analysis (cf. Jaeger, 2008, JML) For the categorical data problem, alternatives to LME are available!  Hierarchical log-linear models  Generalized Estimating Equations  Logistic Regression  Etc. Overview Block 1  Categorical data analysis using hierarchical log-linear models in SPSS/PASW  Advantages/disadvantages using this approach  Examples/Demos Block 2  Categorical data analysis using Generalized Estimating Equations (GEE) in SPSS/PASW  Very similar to LME, actually  distribution link functions  Inclusion of continuous predictors (covariates)  No „random effects‟, but instead classical distinction between “within” and “between” factors (mixed designs are no problem)  Examples/Demos Overview Block 3  Linear Mixed Effects Models (LME) in SPSS/PASW  In SPSS/PASW, no distribution/link functions as yet (hence, can only be applied to normally distributed continuous data)  BUT, can be used to address the subject/item generalization issue  Specifying „proper‟ LME random models  Comparison to classical F1, F2, min. F‟ approach  Potential problems Log-linear Analysis Christoph Scheepers The Problem Measurement at nominal scale level  e.g.,

文档评论(0)

bodkd + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档