人工智能Nilson版-英文课件-Chap03.pptVIP

  1. 1、本文档共27页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
人工智能Nilson版-英文课件-Chap03.ppt

(c) 2000, 2001 SNU CSE Biointelligence Lab Neural Networks Chapter 3 3.1 Introduction TLU (threshold logic unit): Basic units for neural networks Based on some properties of biological neurons Training set Input: real value, boolean value, … Output: di: associated actions (Label, Class …) Target of training Finding f(X) corresponds “acceptably” to the members of the training set. Supervised learning: Labels are given along with the input vectors. 3.2.1 TLU Geometry Training TLU: Adjusting variable weights A single TLU: Perceptron, Adaline (adaptive linear element) [Rosenblatt 1962, Widrow 1962] Elements of TLU Weight: W =(w1, …, wn) Threshold: ? Output of TLU: Using weighted sum s = W?X 1 if s ? ? 0 0 if s ? ? 0 Hyperplane W?X ? ? = 0 3.2.2 Augmented Vectors Adopting the convention that threshold is fixed to 0. Arbitrary thresholds: (n + 1)-dimensional vector W = (w1, …, wn, 1) Output of TLU 1 if W?X ? 0 0 if W?X 0 3.2.3 Gradient Decent Methods Training TLU: minimizing the error function by adjusting weight values. Two ways: Batch learning v.s. incremental learning Commonly used error function: squared error Gradient : Chain rule: Solution of nonlinearity of ?f / ?s : Ignoring threshod function: f = s Replacing threshold function with differentiable nonlinear function 3.2.4 The Widrow-Hoff Procedure Weight update procedure: Using f = s = W?X Data labeled 1 ? 1, Data labeled 0 ? ?1 Gradient: New weight vector Widrow-Hoff (delta) rule (d ? f) 0 ? increasing s ? decreasing (d ? f) (d ? f) 0 ? decreasing s ? increasing (d ? f) The Generalized Delta Procedure Sigmoid function (differentiable): [Rumelhart, et al. 1986] The Generalized Delta Procedure (II) Gradient: Generalized delta procedure: Target output: 1, 0 Output f = output of sigmoid function f(1– f) = 0, where f = 0 or 1 Weight change can occur only within ‘fuzzy’ region surrounding the hyperplane (near the point f(s) = ?). The Error-Correction Procedure Using threshold unit: (

文档评论(0)

heroliuguan + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8073070133000003

1亿VIP精品文档

相关文档