网站大量收购独家精品文档,联系QQ:2885784924

2012语音信号(课设).doc

  1. 1、本文档共16页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
2012语音信号(课设)

第一章 绪论 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。虽然从事这一领域研究的人员主要来自信号与信息处理及计算机应用等学科,但是它与语音学、语言学、声学、认知科学、生理学、心理学等许多学科也有非常密切的联系。 20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。 第二章 系统方案论证 2.1试验目的 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 (1) 要求的数学知识多而且深,如概率统计、随机过程等; (2) 要求掌握的基础知识强,信号与系统、信号处理是本课程的理论基础; (3) 与其他学科及应用密切相关如通信、计算机、人工智能、模式识别、神经网络等。 2.2课程设计内容 (1)通过设计实现原始波形图。 (2)通过设计实现加窗后信号频谱图。 (3)通过设计实现加窗后时域波形图。 (4)通过设计实现加窗后自相关波形图。 (5)通过设计实现复倒谱图形。 (6)通过设计实现对数幅度谱图形。 (7)通过设计实现加窗后波形。 (8)通过设计实现声音增强波形。 2.3实验原理 2.3.1短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: (2-1) 其中w(n-m)是实窗口函数序列,n表示某一语音信号帧。令n-m=k,则得到 (2-2) 于是可以得到 (2-3) 假定 (2-4) 则可以得到 (2-5) 同样,不同的窗口函数,将得到不同的傅立叶变换式的结果。由上式可见,短时傅立叶变换有两个变量:n和ω,所以它既是时序n的离散函数,又是角频率ω的连续函数。与离散傅立叶变换逼近傅立叶变换一样,如令ω=2πk/N,则得离散的短时傅立叶吧如下: (2-6) 2.3.2语谱图 水平方向是时间轴,垂直方向是频率轴,图上的灰度条纹代表各个时刻的语音短时谱。语谱图反映了语音信号的动态频率特性,在语音分析中具有重要的实用价值。被成为可视语言。 语谱图的时间分辨率和频率分辨率是由窗函数的特性决定的。时间分辨率高,可以看出时间波形的每个周期及共振峰随时间的变化,但频率分辨率低,不足以分辨由于激励所形成的细微结构,称为宽带语谱图;而窄带语谱图正好与之相反。 宽带语谱图可以获得较高的时间分辨率,反映频谱的快速时变过程;窄带语谱图可以获得较高的频率分辨率,反映频谱的精细结构。两者相结合,可以提供带两与语音特性相关的信息。语谱图上因其不同的灰度,形成不同的纹路,称之为“声纹”。声纹因人而异,因此可以在司法、安全等场合得到应用。 2.3.3复倒谱和倒谱 复倒谱是x(n)的Z变换取对数后的逆Z变换,其表达式如下: (2-7) 倒谱c(n)定义为x(n)取Z变换后的幅度对数的逆Z变换,即 (2-8) 在时域上,语音产生模型实际上是一个激励信号与声道冲激响应的卷积。对于浊音,激励信号可以由周期脉冲序列表示;对于清音,激励信号可以由随机噪声序列表示。声道系统相当于参数缓慢变化的零极点线性滤波器。这

文档评论(0)

qwd513620855 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档