- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
wald检验源代码
sawsCal-function (beta, u, omega, test = diag(p), beta0 = matrix(0, p, 1), conf.level = 0.95, method = c(d3, d5, d1, d2, d4, dm), bound = 0.75) { method - match.arg(method, c(d3, d5, d1, d2, d4, dm)) p - length(beta) K - dim(u)[[1]] if (is.vector(test)) { if (any(test == 0) length(test) == p) { warning(test was vector, but treated as matrix because it had p elements and some were 0) test - matrix(test, 1, p) } else { if (max(test) p | min(test) 1) stop(test was a vector and was of incorrect form) test - diag(p)[test, ] } } else { if (is.matrix(test)) { if (dim(test)[[2]] != p) stop(incorrect number of columns for test) if (!is.numeric(test)) stop(test matrix should be numeric) } else stop(test not a vector or matrix) } r - dim(test)[[1]] vminv - apply(omega, c(2, 3), sum) vm - solve(vminv) if (method == d4 | method == d5) { HCalc - function(omegai, Vm = vm, b = bound) { (1 - pmin(b, diag(omegai %*% Vm)))^(-0.5) } H - t(apply(omega, 1, HCalc)) } else H - matrix(1, K, p) if (method == d2 | method == d4) { PsiHat - PsiHatCalc(u, H) df - dfCalc(PsiHat, u, omega, H, test, vm) } else if (method == d3 | method == d5) { PsiTilde - PsiTildeCalc(u, H, test, omega, vm, vminv, p, K) df - rep(NA, r) for (j in 1:r) { df[j] - dfCalc(PsiTilde[j, , , ], u, omega, H, test[j, ], vm) } } else if (method == d1 | method == dm) { df - rep(Inf, r) } if (method == dm) { V - vm } else if (method == d1 | method == d2 | method == d3) { V - vm %*% (t(u) %*% u) %*% vm } else if (method == d4 | method == d5) { V - vm %*% (t(H * u) %*% (H * u)) %*% vm } se - sqrt(diag(test %*% V %*% t(test))) Tval - (test %*% (matrix(beta, p, 1) - beta0))/se df[df 1] - 1 p.value - 1 - pf((Tval)^2, 1, df) conf.int - matrix(NA, r, 2) conf.int[, 1] - test %*% (matrix(beta, p, 1) - beta0) - se * qt(1 - (1 - conf.level)/2, df) conf.int[, 2] - test %*% (matrix(beta, p, 1) - beta0) + se * qt(1 - (1 - conf.level)/2, df) attr(conf.int, conf.level) - conf.level estimate - test %*% (matrix(beta, p, 1) - beta0)
文档评论(0)