ON THE FOUNDATIONS OF MATHEMATICAL ECONOMICS详解.doc

ON THE FOUNDATIONS OF MATHEMATICAL ECONOMICS详解.doc

  1. 1、本文档共33页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
ON THE FOUNDATIONS OF MATHEMATICAL ECONOMICS详解

ON THE FOUNDATIONS OF MATHEMATICAL ECONOMICS J. Barkley Rosser, Jr. James Madison University rosserjb@ /rosserjb February, 2010 Abstract: Kumaraswamy Vela Velupillai [74] presents a constructivist perspective on the foundations of mathematical economics, praising the views of Feynman in developing path integrals and Dirac in developing the delta function. He sees their approach as consistent with the Bishop constructive mathematics and considers its view on the Bolzano-Weierstrass, Hahn-Banach, and intermediate value theorems, and then the implications of these arguments for such “crown jewels” of mathematical economics as the existence of general equilibrium and the second welfare theorem. He also relates these ideas to the weakening of certain assumptions to allow for more general results as shown by Rosser [51] in his extension of G?del’s incompleteness theorem in his opening section. This paper considers these arguments in reverse order, moving from the matters of economics applications to the broader issue of constructivist mathematics, concluding by considering the views of Rosser on these matters, drawing both on his writings and on personal conversations with him. Acknowledgements: I thank K. Vela Velupillai most particularly for his efforts to push me to consider these matters in the most serious manner, as well as my late father, J. Barkley Rosser [Sr.] and also his friend, the late Stephen C. Kleene, for their personal remarks on these matters to me over a long period of time. I also wish to thank Eric Bach, Ken Binmore, Herb Gintis, Jerome Keisler, Roger Koppl, David Levy, and Adrian Mathias for useful comments. The usual caveat holds. I also wish to dedicate this to K. Vela Velupillai who inspired it with his insistence that I finally deal with the work and thought of my father, J. Barkley Rosser [Sr.], as well as Shu-Heng Chen, who supported him in this insistence. I thank both of them for this. Introduction “Beauty is truth, truth beauty.” --

文档评论(0)

bodkd + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档