[所有分类]材料科学基础-第2章晶体缺陷.pptVIP

[所有分类]材料科学基础-第2章晶体缺陷.ppt

  1. 1、本文档共81页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
[所有分类]材料科学基础-第2章晶体缺陷

* 2.3.1 晶体表面 外表面是非常粗糙的,比材料内部活性更大。 纳米结构材料(超细粉体与纳米材料、多孔材料和凝胶类似)是表面能很高的一类材料。 对于日常广泛应用的大块材料来说,它们的比表面(单位体积晶体的表面积)很小,因此表面对晶体性能的影响不如晶界重要。但是对于多孔物质或粉末材料,它们的比表面很大,此时表面能就成为不可忽略的重要因素,甚至是关键因素。 粉末的表面能数值相当可观,成为不少过程的驱动力,例如粉末在高温下可烧结为整体,其驱动力就来自于高的表面能。 * 2.3.2 晶界(Grain boundary) 晶界就是空间取向(或位向)不同的相邻晶粒之间的界面。晶粒内又可分为位向差只有几分到几度的若干小晶块、这些小晶块可称为亚晶粒,相邻亚晶粒之间的界面称为亚晶界。 1.小角度晶界( θ<10°) 多晶体各晶粒之间的晶界 对称倾转型 (title boundary):它是由一列竖直排列的刃型位错构成,亦称“位错墙”。 扭转型:它可以看成两个简单立方晶粒之间的扭转晶界。扭转型小角度晶界,是由相交的螺位错网络所构成。 由于小角度晶界的界面能低于规则晶粒的晶界能,所以小角度晶界对滑移几乎没有什么阻碍作用。 2. 大角度晶界(θ>10°) 亚晶界 相当于两晶粒之间的过渡层,是仅有2-3个原子厚度的薄层,总体来说,原子排列相对无序,也比较稀疏些。 * Figure (a) The atoms near the boundaries of the three grains do not have an equilibrium spacing or arrangement. (b) Grains and grain boundaries in a stainless steel sample. * Figure 2.22 The small angle grain boundary is produced by an array of dislocations, causing an angular mismatch θ between lattices on either side of the boundary. 图2-22 对称倾转型小角度晶界 * 2.3.3 晶界特性 晶粒长大和晶界的平直化都可减少晶界的总面积,从而降低晶界的总能量。大角度晶界的界面能远高于小角度晶界的界面能。所以,大角度晶界的迁移速率较小角度晶界大。 由于界面能的存在,当金属中存在能降低界面能的异类原子时,这些原子就将向晶界偏聚,这种现象称为内吸附。凡是提高界面能的原子,将会在晶粒内部偏聚,这种现象叫做反内吸附。 晶粒越细,金属材料的强度和硬度越高。 由于界面能的存在,使晶界的熔点低于晶粒内,且易于腐蚀和氧化。 晶界上的空位、位错等缺陷较多,因此,原子的扩散速度较快,在发生相变时,新相晶核往往首先在晶界形成。 * Figure The effect of grain size on the yield strength of steel at room temperature. * 2.3.4 晶界的观察 光学显微镜分析是一种可以观察2000倍以下的显微组织(包括晶界)的技术。金相学(Metallography)就是金属样品的制备和显微组织的观察分析的过程。 金相样品的制备包括使用砂纸进行粗磨和细磨,抛光成镜面。样品表面用化学浸蚀剂浸蚀,晶界比晶内更易于腐蚀。根据样品表面腐蚀的程度,反射或散射来自光学显微镜的光线。晶界处腐蚀得很深,光线大部分被散射,因此晶界看上去为黑色的线。 在陶瓷材料样品中,可以采用热腐蚀或热刻蚀(thermal grooving)的技术来观察晶界。这个过程主要包括抛光和低于烧结温度的短时加热过程。 图像分析程序不仅可以确定晶粒度,还可以得到平均晶粒尺寸、晶粒分布,孔隙率和第二相等定量数据。光学显微镜和扫描电镜都可以配备图像分析系统。 * Figure Microstructure of palladium (x 100). * 2.3.5 堆垛层错(Stacking Faults) 堆垛层错(层错),就是晶体中的原子按正常堆垛次序发生了差错而出现的面缺陷。 堆垛层错破坏了晶体的正常周期,从而增加了晶体的能量。通常把产生单位面积层错所需的能量称为层错能。它主要是在电子学方面的影响,晶体中并不产生点阵畸变,畸变能可以不计。因此,层错能的能量比晶界能量要低得多。堆垛层错对滑移有阻碍作用。 金属的层错能越小,则层错出现的几率越大,如在奥氏体不锈钢中,可以看到大量的层锗,而在铝中则根本看不到层错。 金属 Ag Au Cu Al Ni 不锈钢 层错能 20 45 75 200 240 13 表2-4 部分面心立方金属的层错能

文档评论(0)

jiupshaieuk12 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:6212135231000003

1亿VIP精品文档

相关文档