[理学]量子化学课程习题及标准答案.doc

  1. 1、本文档共55页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
[理学]量子化学课程习题及标准答案

量子化学习题及标准答案 Chapter 01 1. A certain one-particle, one-dimensional system has , where a and b are constants and m is the particle’s mass. Find the potential-energy function V for this system. (Hint: Use the time-dependent Schrodinger equation.) Solution:As ?(x,t) is known, we can derive the corresponding derivatives. According to time-dependent Schroedinger equation, substituting into the derivatives, we get 2. At a certain instant of time, a one-particle, one-dimensional system has , where b = 3.000 nm. If a measurement of x is made at this time in the system, find the probability that the result (a) lies between 0.9000 nm and 0.9001 nm (treat this interval as infinitesimal); (b) lies between 0 and 2 nm (use the table of integrals, if necessary). (c) For what value of x is the probability density a minimum? (There is no need to use calculus to answer this.) (d) Verify that is normalized. Solution:a) The probability of finding an particle in a space between x and x+dx is given by b) c) Clearly, the minimum of probability density is at x=0, where the probability density vanishes. d) 3. A one-particle, one-dimensional system has the state function where a is a constant and c = 2.000 ?. If the particle’s position is measured at t = 0, estimate the probability that the result will lie between 2.000 ? and 2.001 ?. Solution:when t=0, the wavefunction is simplified as Chapter 02 1. Consider an electron in a one-dimensional box of length 2.000? with the left end of the box at x = 0. (a) Suppose we have one million of these systems, each in the n = 1 state, and we measure the x coordinate of the electron in each system. About how many times will the electron be found between 0.600 ? and 0.601 ?? Consider the interval to be infinitesimal. Hint: Check whether your calculator is set to degrees or radians. (b) Suppose we have a large number of these systems, each in the n =1 state, and we measure the x coordinate of the electron in each system and find the ele

文档评论(0)

hhuiws1482 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:5024214302000003

1亿VIP精品文档

相关文档