- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于角不变特征的三维点云配准算法RegistrationforDPointCloud
基于角不变特征的三维点云配准算法 基于角不变特征的三维点云配准算法 Registration for 3-D Point Cloud Using Angular-Invariant Feature 姜军 程俊 陈兴林 摘 要 本文针对三维配准中的对应点选择问题,提出了一种角不变特征。特征量是一个 维向量,向量中的元 k 素表示点的法向量与该点的 个最近邻的法向量之间的夹角。这种角特征不随尺度、旋转变换而变化,能够应 k 用到表面曲率较小的配准问题。角特征不需要给定初始变换矩阵和平移向量,因而提高了配准的收敛速度,降 低了配准误差。此外,角不变特征不要求严格的采样策略。本文通过证明了基于角不变特征的配准算法优ICP 算法,以及基于曲率不变特征的算法。 关键词 三维配准;ICP算法;角不变量;曲率不变量;三维点云 ABSTRACT This paper proposes an angular-invariant feature for 3-D registration procedure to perform reliable selection of point correspondence. The feature is a k-dimensional vector, and each element within the vector is an angle between the normal vector and one of its k nearest neighbors. The angular feature is invariant to scale and rotation transformation, and is applicable for the surface with small curvature. The feature improves the convergence and error without any assumptions about the initial transformation. Besides, no strict sampling strategy is required. Experiments illustrate that the proposed angular-based algorithm is more effective than iterative closest point (ICP) and the curvature-based algorithm. KEYWORDS 3-D registration; ICP; angular invariant; curvature invariant; 3-D point cloud 1 Introduction hape inspection of objects from real world typically search for correspondences. Soucy et al. [7] locally Srequires three stages:(1)the data capture stage to register surface patches by minimizing the distance sample the 3-D world using a range camera;(2)the data between Darboux frames over an entire neighborhood. registration stage to align the sampled data shape to the Yang et al. [8] minimize a scaled product of positional and model shap
文档评论(0)