- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
改进k近邻和支持向量机相融合的天气识别-计算机工程与应用
148 2014 ,50(14) Computer Engineering and Applications 计算机工程与应用
改进K 近邻和支持向量机相融合的天气识别
1 1 2
张红艳 ,李茵茵 ,万 伟
1 1 2
ZHANG Hongyan , LI Yinyin , WAN Wei
1.广州中心气象台,广州 510080
2.广东广播电视大学 计算机技术系,广州 510091
1.Guangzhou Central Meteorological Observatory, Guangzhou 510080, China
2.Department of Computer Technology, Guangdong Radio TV University, Guangzhou 510091, China
ZHANG Hongyan, LI Yinyin, WAN Wei. Weather identification based on improved K nearest neighbor and sup-
port vector machine. Computer Engineering and Applications, 2014, 50 (14):148-151.
Abstract :The weather which is affected by many factors is changeable and uncertain, single model is difficult to obtain
high identification rate, therefore, this paper proposes a weather identification model (IKNN-SVM )based on improved K
nearest neighbor and support vector machine. Firstly, the distance between of the testing sample and a hyper plane is cal-
culated, then the distance is compared with the threshold, if distance is greater than the threshold, then support vector
machine is used to identify the weather, otherwise the K nearest neighbor algorithm is used to identify the weather, and the
sample density is introduced to solve the defects of K nearest neighbor algorithm, finally the simulation experiment is car-
ried out to test on the performance of model. The simulation results show that, compared with the single KNN or SVM,
IKNN-SVM has improved weather identification correct rate and can overcome the defects of the single model.
Key words :weather identification; support vector machine; K nearest neighbor; recognition correct rate
摘 要:天气受到多种因素综合影响,具有时变性和不确定性,单一模型难以获得较高的识别正确率,为此,提出一
种改进K 近邻和支持向量机相融合的天气识别模型(IKNN-SVM )。首先计算待识别样本与超平面间距离,然后将
距离与预设阈值进行比较,如果大于阈值,则采用支持向量机对天气进行识别,否则利用K 近邻算法对天气进行识
别,并引入样本密度对K 近邻算法进行改进,最后采用仿真实验对模型性能进行测试。仿真结果表明,相对于单一
的KNN 或SVM ,IKNN-SVM 提高了天气识别正确率,较好地克服单一模型存在的缺陷。
关键词:天气识别;支持向量
文档评论(0)