- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
ument Clustering Based On Non-Negative Matrix Factorization文档的基于非负矩阵分解的聚类
A General Model for Relational Clustering Bo Long and Zhongfei (Mark) Zhang Computer Science Dept./Watson School SUNY Binghamton Xiaoyun Wu Yahoo! Inc. Philip S.Yu IBM Watson Research Center Multi-type Relational Data (MTRD) is Everywhere! Bibliometrics Papers, authors, journals Social networks People, institutions, friendship links Biological data Genes, proteins, conditions Corporate databases Customers, products, suppliers, shareholders Challenges for Clustering! Data objects are not identically distributed: Heterogeneous data objects (papers, authors). Data objects are not independent Heterogeneous data objects are related to each other. Relational Data? Flat Data? Relational Data? Flat Data? No interactions of hidden structures of different types of data objects Difficult to discover the global community structure. A General Model: Collective Factorization on Related Matrices Formulate multi-type relational data as a set of related matrices; cluster different types of objects simultaneously by factorizing the related matrices simultaneously. Make use of the interaction of hidden structures of different types of objects. Data Representation Represent a MTRD set as a set of related matrices: Relation matrix, R(ij), denotes the relations between ith type of objects and jth type of objects. Feature matrix, F(i), denotes the feature values for ith type of objects. Matrix Factorization Model: Collective Factorization on Related Matrices (CFRM) CFRM Model: Example Spectral Clustering Algorithms that cluster points using eigenvectors of matrices derived from the data Obtain data representation in the low-dimensional space that can be easily clustered Traditional spectral clustering focuses on homogeneous data Main Theorem: Algorithm Derivation: Iterative Updating Spectral Relaxation Spectral Relational Clustering (SRC) Spectral Relational Clustering: Example Update C (1) as k1 leading eigenvectors of Update C (2) as k2 leading eigenvectors of Upda
您可能关注的文档
最近下载
- Q/GDW 13239.1—2018 35kV电力电缆采购标准(第1部分:通用技术规范).pdf VIP
- 水电解质酸碱代谢失衡病人的护理失衡.ppt VIP
- Q∕GDW 13247.2-2018 35kV电力电缆附件采购标准 第二部分:专用技术规范(高清-可复制).pdf VIP
- 2024届高考英语一轮总复习选择性必修第二册Unit3FoodandCulture教师用书.doc VIP
- 医学检验生物安全培训课件.pptx VIP
- 高三化学教学反思15篇.pdf VIP
- 河南成人2024学位英语考试真题及答案.docx VIP
- 中药新药临床研究.pptx VIP
- 2024届高考英语一轮总复习选择性必修第二册Unit1ScienceandScientists教师用书.doc VIP
- 农田喷灌工程施工方案(3篇).docx VIP
文档评论(0)