- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于主题的关键词提取方法对比研究毕业论文
基于主题的关键词提取方法对比研究摘 要关键词提供了文档的概要信息,在信息检索、文本聚类和分类系统中受到了越来越多的应用,关键词的提取算法也受到了越来越多的重视。传统的方法主要依靠词汇的统计信息进行关键词提取,本文在回顾关键词提取的算方法的基础上,从文档主题的角度,综述了基于主题的关键词提取的三种算法--潜在语义分析(LSA)、概率潜在语义分析(PLSA)、隐含狄利克雷分布(LDA)。LSA方法将文档从稀疏的高维词汇空间映射到一个低维的向量空间,主要通过奇异值分解SVD的方式来求解。PLSA方法它用概率的方法来表示LSA,在文档和词汇之间引入一个潜在语义层(即主题层)。LDA的基本思想是: 利用概率推导等方式可以将单个文档表示为这些潜在主题的集合,对于主题而言,它又可以看成是若干词汇的概率分布。为了验证这三种方法的性能的优越与否,将理论与实践结合,本文通过实验将三种基于主题的关键词提取算法与TF-IDF方法进行对比,对实验结果进行总结归纳;实验证明,这三种方法无论是从召回率上还是从准确率上都优于TF-IDF方法,能够有效推荐关键词。 关键词:关键词提取;LSA;PLSA;LDAResearch on Algorithms of Topic Based Keyword Extraction Abstract Keywords provide semantic metadata producing an overview of the content of a document. They are widely used in information retrieval, text clustering and classification system. As a result, people pay a lot of attention to keyword extraction algorithm. Traditional methods for keyword extraction simply rank keywords according to the statistical information of words. After reviewing some methods of keyword extraction, this article summarizes three topic based methods of keyword extraction which are Latent Semantic Analysis (LSA), Probability Latent Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA).LSA maps the document from sparse high dimension space to a low dimensional vector space, mainly through the singular value decomposition (SVD). PLSA brings in a latent semantic layer which is called theme layer between documents and words. It explains LSA in a probabilistic way. The basic idea of LDA is: document can be regarded as the combination of several potential themes. A single document can be described as the collection of the underlying theme in a probabilistic way. To prove whether the topic based keyword extraction algorithms are efficient,this article combines theory with practice. After experiment, it compares these three algorithms with the traditional TF-IDF algorithm. It proves that both the recall and the precision get improved. The three topic based keyword extraction algorithm dose well in k
有哪些信誉好的足球投注网站
文档评论(0)