老外经典SIFT算法PPT.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
老外经典SIFT算法PPT

Scale Invariant Feature Transform Tom Duerig Why do we care about matching features? Object Recognition Wide baseline matching Tracking/SFM We want invariance!!! Good features should be robust to all sorts of nastiness that can occur between images. Types of invariance Illumination Types of invariance Illumination Scale Types of invariance Illumination Scale Rotation Affine Types of invariance Illumination Scale Rotation Affine Full Perspective How to achieve illumination invariance The easy way (normalized) Difference based metrics (random tree, Haar, and sift) How to achieve scale invariance Pyramids Divide width and height by 2 Take average of 4 pixels for each pixel (or Gaussian blur) Repeat until image is tiny Run filter over each size image and hope its robust Scale Space (DOG method) Pyramids How to achieve scale invariance Pyramids Scale Space (DOG method) Pyramid but fill gaps with blurred images Like having a nice linear scaling without the expense Take features from differences of these images If the feature is repeatably present in between Difference of Gaussians it is Scale Invariant and we should keep it. Differences Of Gaussians Rotation Invariance Rotate all features to go the same way in a determined manner Take histogram of Gradient directions (36 in paper for 1 every 10 degrees) Rotate to most dominant (maybe second if its good enough, sub-Bin accuracy) Rotation Invariance Affine Invariance Easy way: Warp your training and hope Fancy way: design your feature itself to be robust against affine transformations (SIFT method) Actual SIFT features Remember the gradient histograms we used for rotation invariance? Same theory, except keep N2 histograms (4 shown, 16 used) Note, use weighted contributions to avoid edge nastiness SIFT algorithm overview Get tons of points from maxima+minima of DOGS Threshold on simple contrast (low contrast is generally less reliable than high for feature points) Threshold based on principal curvatures (technical

文档评论(0)

laolingdao1a + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档