- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
K-Means Clustering - Example - USC Upstate Facultyk-均值聚类样本学院USC北部
K-Means Clustering – Example We recall from the previous lecture, that clustering allows for unsupervised learning. That is, the machine / software will learn on its own, using the data (learning set), and will classify the objects into a particular class – for example, if our class (decision) attribute is tumorType and its values are: malignant, benign, etc. - these will be the classes. They will be represented by cluster1, cluster2, etc. However, the class information is never provided to the algorithm. The class information can be used later on, to evaluate how accurately the algorithm classified the objects. Curvature Texture Blood Consump Tumor Type x1 0.8 1.2 A Benign x2 0.75 1.4 B Benign x3 0.23 0.4 D Malignant x4 . . 0.23 0.5 D Malignant Curvature Texture Blood Consump Tumor Type x1 0.8 1.2 A Benign x2 0.75 1.4 B Benign x3 0.23 0.4 D Malignant x4 . . 0.23 0.5 D Malignant (learning set) With the K-Means algorithm, we recall it works as follows: Example Problem: Cluster the following eight points (with (x, y) representing locations) into three clusters A1(2, 10) A2(2, 5) A3(8, 4) A4(5, 8) A5(7, 5) A6(6, 4) A7(1, 2) A8(4, 9). Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2). The distance function between two points a=(x1, y1) and b=(x2, y2) is defined as: ρ(a, b) = |x2 – x1| + |y2 – y1| . Use k-means algorithm to find the three cluster centers after the second iteration. Solution: Iteration 1 (2, 10) (5, 8) (1, 2) Point Dist Mean 1 Dist Mean 2 Dist Mean 3 Cluster A1 (2, 10) A2 (2, 5) A3 (8, 4) A4 (5, 8) A5 (7, 5) A6 (6, 4) A7 (1, 2) A8 (4, 9) First we list all points in the first column of the table above. The initial cluster centers – means, are (2, 10), (5, 8) and (1, 2) - chosen randomly. Next, we will calculate the distance from the first point (2, 10) to each of the three means, by using the distance function: point mean1
您可能关注的文档
- 3福特福克斯两厢 价值评估报告.doc
- 4、大拇指汤姆.ppt
- 4、饲喂营养中心犊牛管理.doc
- 5 附件F:输电线路线路工频参数测试报告模板(异频法).doc
- 5000吨膨化食品可行性研究报告.doc
- 5000立方米储罐设计.doc
- 54用一元一次方程解决实际问题3.doc
- 5《金融机构客户身份识别和客户身份资料及交易记录保存管理办法》.doc
- 6 卫生部原发性肝癌诊疗规范放射治疗.ppt
- 6-建筑施工工艺标准大全——全篇.doc
- Joint Works, Collective Works, and Duration合作作品,集体作品,和持续时间.ppt
- Intracranial Pressure - University of Windsor颅内压-温莎大学.ppt
- Kitchen and Food Safety - Utah Education Network厨房和食品安全-犹他州教育网.ppt
- LED照明与功率因数关系解析.doc
- JS机电安装监理工程师考试复习资料 上海建智培训部安装资料╲t╲t╲t╲t╲t╲t╲t 1 1.doc
- Les Miserables 悲惨世界英文电影剧本Script.doc
- Lesson Five Speech on Hitler’s Invasion of the U五课上的讲话希特勒入侵美国.doc
- LogFrame Matrix - Home - LINGOs逻辑框架矩阵-家居-行话.ppt
- LTE_FDD 切换专题介绍.doc
- LTE语音连续性解决方案以及与现网2、3G互操作研究.docx
文档评论(0)