Spatial Analysis The University of Texas at Dallas(空间分析德州大学达拉斯).pptVIP

Spatial Analysis The University of Texas at Dallas(空间分析德州大学达拉斯).ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Spatial Analysis The University of Texas at Dallas(空间分析德州大学达拉斯)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * Non-uniformity of Space and Choropleth Maps Always normalize data if drawing a choropleth map By total population By geographic area Do not map “counts” unless population and/or geographic area are the same size for all observation units Failing to “normalize” is a very common mistakes made by non-professional GIS people You are professionals Do not make that mistake! Briggs Henan University 2012 * Edge or Boundary Effect Every study region has a boundary (unless you study the entire world!) You do not have data for outside your study region However, the outside data can affect the inside data if there is spatial autocorrelation Consequently, edges of the map, beyond which there is no data, can significantly effect results Use the toroid concept --bends the left edge to meet the right and the top to meet the bottom --uses all the data --assumes that there is no systematic spatial trend in data Solutions: Core study region Use Core/Periphery --analyze only the core --use edge only for “neighborhood” calculations --reduces amount of data available * Briggs Henan University 2012 periphery or guard area Spatial organization is usually important The results from a traditional regression analysis ignore how the observation units are organized spatially! Data from location near to each other are usually more similar than data from locations far away Must be considered in your analysis Also causes serious problems with traditional statistical hypotheses testing Spatial statistical models are essential Spatial Autocorrelation * Briggs Henan University 2012 What is the most common mistake in GIS analysis? Briggs Henan University 2012 * Much more basic than any discussed above. Single most common error in GIS Analysis --intending a one to one join of attribute data to spatial table --getting a one to many join of attribute data to spatial table Spatial After joining attribute to spatial data Hawaii 54

您可能关注的文档

文档评论(0)

jiupshaieuk12 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:6212135231000003

1亿VIP精品文档

相关文档