Simple linear regression statstutor(简单线性回归statstutor).pdfVIP

Simple linear regression statstutor(简单线性回归statstutor).pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Simple linear regression statstutor(简单线性回归statstutor)

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between the two variables. Straight line formula Central to simple linear regression is the formula for a straight line that is most commonly represented as y mx c or y a bx . Statisticians however generally prefer to use the following form involving betas: y   x 0 1 The variables y and x are those whose relationship we are studying. We give them the following names:  y : dependent (or response) variable;  x : independent (or predictor or explanatory) variable. It is convention when plotting data to put the dependent and independent data on the y and x axis respectively; 0 and 1 are constants and are parameters (or coefficients) that need to be estimated from data. Their roles in the straight line formula are as follows:  0 : intercept;  1 : gradient. For instance the line y 10.5x has an intercept of 1 and a gradient of 0.5. Its graph is as follows: Model assumptions In simple linear regression we aim to predict the response for the ith individual, Yi , using the individual‟s score of a single predictor variable, X i . The form of the model is given by: Y   X  i 0 1 i i which comprises a deterministic component involving the two regression coefficients ( 0 and 1 ) and a random component involving the residual (error) term ( i ). The deterministic component is in the form of a straight line which provides the predicted (mean/expected) response for a given predicto

您可能关注的文档

文档评论(0)

jiupshaieuk12 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:6212135231000003

1亿VIP精品文档

相关文档