text2_期望值与矩.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
text2_期望值与矩

Technical English For Communication Engineering;Expectations and Moments; Expectations, or expected values, are simply probabilistic averages of random variables (or functions of variables) in an experiment. We begin with the case of a single random variable, after which generalization to the multivariate case is simple.; Let g (X) be a function of a random variable X with a specified probability density function or probability mass(质量) function. Thus, Y = g (X) is another r. v. , which may be either discrete or continuous depending on the nature of the random variable X and the function g (X). The expected value of Y, written E [Y], is defined as (2.1a) ; In the case of discrete r. v. ’s, we replace the integral with a summation: (2.1b) The relation in (2.1) is sometimes called the fundamental theorem of expectation, but we take it as a definition. In words, the expected value is simply the probability-weighted average of values of g (X), and the notation E[ ] is merely shorthand for an integral operator.; 1. First and Second Moments Important special cases of this general definition are obtained when g (X) = X, the identity function, and when g (X) = X2. In the former case or (2.2) is called the first moment of X or, more commonly, the mean of X or the expected value of X.;For shorthand, the expected value of X will be represented by or occasionally by m when the random variable name is clear. To recall an analogy in mechanics, if the density function, or probability mass function, is symmetric about some value x0 , then = x0, provided the integral or sum in (2.2) exists. ; When g (X) = X2 , we have (2.3) which is called the second moment, or

文档评论(0)

xcs88858 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8130065136000003

1亿VIP精品文档

相关文档