- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第七节 离子交换色谱难点
第七节 离子交换色谱
离子交换色谱(ion-exchange chromatography,IEC)是发展最早的色谱技术之一。20世纪30年代人工合成离子交换树脂的出现对于离子交换技术的发展具有重要意义,基于苯乙烯-二乙烯苯的离子交换树脂至今仍是最广泛使用的一类离子交换树脂。但它并不十分适合对生物大分子如蛋白质、核酸、多糖等的分离,因为:①树脂交联度太大而颗粒内网孔较小,蛋白质分子无法进颗粒内部,只能吸附在表面,造成有效交换容量很小;②树脂表面电荷密度过大,使蛋白质在其上吸附得过于牢固,必须用较极端的条件才能洗脱,而这样的条件往往易造成蛋白质变性;③树脂的骨架具疏水性,一旦与蛋白质之间发生疏水相互作用,也容易造成蛋白质变性失活。
20世纪50年代中期,Sober和Peterson合成了羧甲基(CM-)纤维素和二乙氨乙基(DEAE-)纤维素,这是两种亲水性和大孔型离子交换剂。其亲水性减少了离子交换剂与蛋白质之间静电作用以外的作用力,而大孔型结构使蛋白质能进人网孔内部从而大大提高了有效交
换容量,而纤维素上较少的离子基团有利于蛋白质的洗脱,因此这两种离子交换剂得到了极为广泛的应用。此后,多种色谱介质特别是颗粒型介质被开发和合成,包括交联葡聚糖凝胶、交联琼脂糖、聚丙烯酞胺以及一些人工合成的亲水性聚合物等,以这些介质为骨架结合上带电基团衍生而成的离子交换剂也层出不穷,极大地推动了离子交换技术在生化分离中的发展和应用。
一、离子交换色谱相关理论
(一)基本原理
离子交换色谱分离生物分子的基础是待分离物质在特定条件下与离子交换剂带相反电荷因而能够与之竞争结合,而不同的分子在此条件下带电荷的种类、数量及电荷的分布不同,表现出与离子交换剂在结合强度上的差异,在离子交换色谱时按结合力由弱到强的顺序被洗脱下来而得以分离。离子交换色谱的原理和一般步骤如图6.7-1所示。
图6.7-1 离子交换色谱原理
起始缓冲液中的离子; 梯度缓冲液中的离子; 极限缓冲液中的离子;
待分离的目标分子;▲ 需除去的杂质
1- 上样阶段,此时离子交换剂与平衡离子结合;2- 吸附阶段,混合样品中的分子与离子交换剂结合;3- 开始解吸阶段,杂质分子与离子交换剂之间结合较弱而先被洗脱,目标分子仍处于吸附状态;4- 完全解吸阶段,目标分子被洗脱;5- 再生阶段,用起始缓冲液重新平衡色谱柱,以备下次使用
蛋白质、多肽、核酸、聚核苷酸、多糖和其他带电生物分子正是如此通过离子交换剂得到了分离纯化,即带负电荷的溶质可被阴离子交换剂交换,带正电荷的溶质可被阳离子交换剂交换。
(二)基本理论
1 . 离子交换作用
离子交换剂由不溶性高分子基质、荷电功能基团和与功能基团电性相反的反离子组成,在水溶液中,与功能基团带相反电荷的离子(包括缓冲液中的离子、蛋白质形成的离子)依靠静电引力能够吸附在其表面(如图6.7-2所示)。这样,各种离子与离子交换剂结合时存在竞争关系。
无机离子与交换剂的结合能力与离子所带电荷成正比,与该离子形成的水合离子半径成反比。也就是说,离子的价态越高,结合力越强;价态相同时,原子序数越高,结合力越强。在阳离子交换剂上,常见离子结合力强弱顺序为:Li+Na+K+Rb+Cs+;Mg2+Ca2+Sr2+Ba2+;Na+Ca2+Al3+Ti4+。
图6.7-2离子交换色潜中所进行的离子
交换过程(以阳离子交换树脂为例)
在阴离子交换剂上,结合力强弱顺序为:F—Cl—Br—I—
目的物与离子交换剂的结合能力首先取决于溶液pH,它决定了目的物的带电状态,此外还取决于溶液中离子的种类和离子强度。起始条件,溶液中离子强度较低,上样后,目的物与交换剂之间结合能力更强,能取代离子而吸附到交换剂上;洗脱时,往往通过提高溶液的离子强度,增加了离子的竞争性结合能.力,使得样品从交换剂上解吸,这就是离子交换色谱的本质。
2. pH和离子强度I的影响
pH和离子强度I是控制蛋白质离子交换行为、分辨率、回收率等的重要因素。
pH决定了目标分子及离子交换剂的带电荷情况,因而是决定目的物是否发生吸附的最重要参数。分离时,应控制pH使得目标分子和离子交换剂带相反的电荷。一方面,离子交换剂有一个工作pH范围,在此范围内能够确保离子交换剂带充足的电荷;另一方面,溶液的pH直接决定了目标分子带电荷的种类和数量,选择适当的pH,能够保证目标分子与离子交换剂带相反电荷而被吸附,同时如果pH距离目标分子等电点过远,则造成目标分子与离子交换剂结合过于牢固而不易洗脱。
在选择操作pH时还需特别注意目标分子的pH稳定范围,若超出此范围会造
文档评论(0)