- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
各种评价方法统计
第一种 模糊评价方法:内燃机性能评价。 第二种 数据包络分析法 人工神经网络评价法 思想与原理 人工神经网络是模仿生物神经网络功能的一种经验模型,输入和输出之间的变换关系一般是非线性的。首先根据输入的信息尽力神经元,通过学习规则或自组织等过程建立相应的非线性数学模型,并不断进行修正,是输出结果与实际值之间的差距不断缩小。人工神经网络通过样本的“学习和培训”,可记忆客观事物在空间、时间方面比较复杂的关系。由于人工神经网络本身具有非线性的特点,且在应用中只需对神经网络进行专门问题的样本训练,它能够把问题的特征反映在神经元之间相互关系的权中,所以,把实际问题特征参数输入后,神经网络输出端就能给出解决问题的结果。 神经网络的特点是,神经网络将信息或知识分布储存在大量的神经元或整个系统中。它具有全息联想的特征,具有高速运算的能力,具有很强的适应能力,具有自学习、自组织的潜力。他能根据历史数据通过学习和训练能找出输入和输出之间的内在联系,从而能得出问题的解。另外,他有较强的容错能力,能够处理那些有噪声或不完全的数据。部分节点不参与运算,也不会对整个系统的性能造成太大的影响。 反向传播(Back Propagation,BP)神经网络是由Rumelhart等人于1985年提出的一种很有影响的神经元模型,它是一种多层次反馈性模型,使用的石油“导师”的学习算法。有广阔的应用前景。 模型和步骤 处理单元,或称之为神经元,是神经网络的最基本组成部分。一个神经网络系统中有许多处理单元,每个处理单元的具体操作步骤都是从其相邻的其他单元中接受输入,然后产生出输出送到与其相邻的单元中去。神经网络的处理单元可以分为三种类型:输入单元、输出单元和隐含单元。输入单元是从外界环境接受信息,输出单元则给出神经网络系统对外界环境的作用,这两种处理单元与外界都有直接的联系。隐含单元则处于神经网络之中,他不与外界产生直接的联系。它从网络内不接受输入信息,是哟产生的输出则制作能够用于神经网络系统中的其他处理单元。隐含单元在神经网络中起着极为重要的作用。 人工神经网络的工作过程具有循环特征。对事物的哦按段分析必须经过一个学习和训练工程。1949年,Hebb率先提出了改变神经元连接强度的学习规则。其过程是:将样本(训练)数据赋予输入端,并将网络实际输出和期望输出相比较,得到误差信号,以此为依据来调整连接权值。重复此过程,直到收敛于稳态。 BP网络是一种具有三层或者三层以上的层次结构网络,相邻上、下层之间各神经元实现全连接,即下层的每个神经元与上层的每个神经元都实现权连接,而每层各种神经元之间无连接。换个角度看,BP神经网络不仅具有输入层节点,输出层节点,还可以有1个或者多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐含层的输出信号传播到输出节点,最后给出输出结果。在BP算法中,节点的作用的机理函数通常选取S形函数。 对于BP模型的输入层神经元,其输出与输入相同,中间隐含层和输出层的神经元的操作规则如下:Ykj=f() Yk-1i是k-1层的第i个神经元的输出,也是第k层神经元的输入; Wk-1i,kj是k-1层第i个元素与k层第j个元素的连接权值; Ykj是第j个神经元的输出,也是第k+1层神经元的输出; f是Sigmoid函数。F(u)=1/(1+e-u) 1989年Robert Hecht-Nielson证明了一个三层的BP网可以完成人意的n维道m维的映照。这实际上已经给了一个基本的设计BP网络的原则。 增加层数主要是可以进一步降低误差,提高精度,但同时是网络复杂化,从而增加了网络权值的训练时间。 误差精度的提高实际上也可以通过增加隐层中的神经元数目来获得,其训练效果也比增加层数更容易观察和调整,所以一般情况下,应先考虑增加隐层的神经元数目。 隐层单元数的选择在神经网络的引用中一直是一个复杂的问题。隐层单元数过少可能训练不出网络或者网络不够“强壮”,不能识别以前没有看过的样本,容错性差;但隐层单元数过多,又会是学习实践过长,误差也不一定最佳,因此存在一个如何确定合适的隐层单数的问题,在具体设计时。比较实际做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量。 假设BP网络每层有N个处理单元,训练集包含M个样本模式对。对第p个学习样本(p=1,2,…,M),节点j的输入总和记为netpj,输出记为Opj,则:netpj= O pj=f(netpj) 如果任意设置网络初始权值,那么对每个输入样本p,网络输出与期望输出(dpj)间的误差为:E=,式中dpj表示对第p个输入样本输出单元的误差的计算是不同的。 在BP网络学习过程中,输出层单元与隐单元的误差的计算是不同的。 BP网络的权值修正公式为:Wji=W ji(t)+ ηδ
有哪些信誉好的足球投注网站
文档评论(0)