基于主成分分析的神经网络动态集成风功率超短期预测 ultra-short-term wind power prediction using ann ensemble based on the principal components analysis.pdfVIP
- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于主成分分析的神经网络动态集成风功率超短期预测 ultra-short-term wind power prediction using ann ensemble based on the principal components analysis
第 41 卷 第 4 期 电力系统保护与控制 Vol.41 No.4
2013 年2 月 16 日 Power System Protection and Control Feb.16, 2013
基于主成分分析的神经网络动态集成风功率超短期预测
何 东,刘瑞叶
(哈尔滨工业大学电气工程及自动化学院,黑龙江 哈尔滨 150001)
摘要:为了解决风电功率神经网络预测输入变量多、计算效率低、泛化能力较差的缺点,采用主成分分析法(PCA)减少变量
数。用神经网络动态集成的方法构建出较强泛化能力的 BP 网络集成。采用南方某风电场的数据进行了预测,比较了选取全
部气象参数、部分气象参数和基于PCA处理后的数据作为神经网络输入对预测精度和计算效率的影响,结果表明采用PCA能
在不降低预测精度的情况下,大大提高运算速度。通过对比单个和集成 BP 神经网络预测结果发现,采用集成网络的预测精
度比单个BP网络精度有所提高,特别是风速突变的情况下更加明显。
关键词:风功率预测;主成分分析;神经网络集成
Ultra-short-term wind power prediction using ANN ensemble based on the principal components analysis
HE Dong, LIU Rui-ye
(College of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, China)
Abstract: The wind power artificial neural network (ANN) forecasting has shortcomings such as a large amount of variables, low
computation efficiency and poor generalization ability. This paper proposes to apply the principal components analysis (PCA) to
reduce the number of variables. Neural network dynamic integrating is adopted to establish the BP network integration with stronger
generalization ability. Data of a wind power station in the South is used to forecast and compare the influence on accuracy and
computation efficiency exerted by neural network input of all meteorological parameters, part of meteorological parameters and data
based on PCA processing respectively. It is shown that using PCA processing can improve the computation efficiency greatly while
keeping the forecast accuracy. Comparing the neural network forecasting results of single BP net with those of integrating BP net, we
found that the latter one can perform better in improving the accuracy, especially in the case of sudden chang
您可能关注的文档
- 基于虚拟仪器技术的电力参数测量系统设计 the design of electrical parameter measurement system based on virtual instrument technique.pdf
- 基于虚拟仪器技术的低压电器多功能参数监测系统 multifunction parameter monitoring system for low voltage electrical apparatus based on virtual instrument technology.pdf
- 基于虚拟仪器技术的led光学特性测量系统 the measurement system of led optical character based on suppositional instruments technology.pdf
- 基于虚拟仪器技术的电力谐波失真分析 analysis of harmonic distortion signal of power system with virtual instrument.pdf
- 基于虚拟仪器技术的电子式互感器校验装置的设计与实现 the design and implementation of electronic transformer calibration device based on virtual instrument technology.pdf
- 基于虚拟仪器技术的钢丝绳无损定量检测系统设计 design of wire rope nondestructive quantitative detection system based on virtual instrument technology.pdf
- 基于虚拟仪器的音频自动测试系统 automatic test system of audio based on virtual instrument.pdf
- 基于虚拟仪器技术的水电机组实验平台建设 construction of hydropower units experimental platform based on virtual instrument technology.pdf
- 基于虚拟仪器技术的输电线路微型物理仿真系统的设计 design of transmission lines physical simulation system based on virtual instrument.pdf
- 基于虚拟仪器技术的相位记录仪自动化测试 auto measurement system of phase recorder based on virtual instrument technology.pdf
- 基于主成分分析法的生物质发电项目效益评价研究 economic evaluation of biomass power project based on principal component analysis.pdf
- 基于主成分分析的区域电力市场厂商市场力评估 evaluation on market power of generation companies in regional electricity market based on principal component analysis.pdf
- 基于主成分分析法的电力需求影响因素分析 analysis on influencial factor of power demand based on principal component analysis.pdf
- 基于主成分分析的最小二乘支持向量机短期负荷预测模型 short-term load forecasting model based on ls-svm with pca.pdf
- 基于轴振灰关联分析的磨煤机最大制粉出力判断 judgement of ballmill's maximal coal pulverizing capacity based on gray incidence analysis of shaft vibration.pdf
- 基于主成分分析和基因表达式程序设计的变压器故障诊断 transformer fault diagnosis based on principal component analysis and gene expression programming.pdf
- 基于主成分和贝叶斯正则化的nox排放量的预测 prediction of nox emission based on principal components and bayesian regularization.pdf
- 基于主成分回归分析的sf_6分解组分红外光谱定量 infrared spectrum quantitative method of sf6 decomposition components based on principal component regression analysis.pdf
- 基于主从递阶决策模型的trm评估 transmission reliability margin assessment based on leader-follower decision-making model.pdf
- 基于主成份分析法的绝缘子外绝缘特性的综合评判 comprehensive evaluation on external insulation properties of insulators based on principal component analysis.pdf
最近下载
- BOM基础知识培训教材.ppt VIP
- 分布式控制系统(DCS)系列:Emerson DeltaV_4.软件安装与配置.docx VIP
- 齿轮箱与联轴节试验台.pdf VIP
- 新解读《FZ_T 07027 - 2023绿色设计产品评价技术规范 儿童服装》必威体育精装版解读.docx VIP
- PTC-中车长客PDM方案建议书20170609_Final.pptx VIP
- sfet7750700c动车组检修kwd联轴节扩压检查作业指导书.pdf VIP
- SFET-77-50500-C-动车组检修KWD联轴节退卸作业指导书-——【上海动车段三级修】.pdf VIP
- JJF(黑)13-2021加油机付油商品量检验规则.docx VIP
- 产品数据管理年终总结.pptx VIP
- 产品数据管理系统项目.pdf VIP
文档评论(0)