学建模__多元线性回归分析 - 副本.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
数学建模__多元线性回归分析-副本

表15-7 逐步回归过程 * 表15-8 例15-3方差分析表 “最优”回归方程为 结果表明:血糖的变化与甘油三脂、胰岛素和糖化血红蛋白有线性回归关系,其中与胰岛素负相关。由标准化回归系数看出,糖化血红蛋白对空腹血糖的影响最大。 * 表15-9 例15-3的回归系数的估计及检验结果 * 第三节 多元线性回归的应用及注意事项 * 一、多元线性回归的应用 * 1. 影响因素分析 例如影响高血压的因素可能有年龄、饮食习惯、吸烟状况、工作紧张度和家族史等,在影响高血压的众多可疑因素中,需要研究哪些因素有影响,哪些因素影响较大。 * 在临床试验中,则可能由于种种原因难以保证各组的指标基线相同,如在年龄、病情等指标不一致出现混杂的情况下,如何对不同的治疗方法进行比较等。 这些问题都可以利用回归分析来处理。控制混杂因素(confounding factor)的一个简单办法就是将其引入回归方程中,与其他主要变量一起进行分析 * 2. 估计与预测 如由儿童的心脏横径、心脏纵径和心脏宽径估计心脏的表面积;由胎儿的孕龄、头颈、胸径和腹径预测出生儿体重等。 * 3. 统计控制 逆估计。 例如采用射频治疗仪治疗脑肿瘤,脑皮质的毁损半径与射频温度及照射时间有线性回归关系,建立回归方程后可以按预先给定的脑皮质毁损半径,确定最佳控制射频温度和照射时间。 * 二、多元线性回归应用的注意事项 1.指标的数量化 分2类,可用一个(0,1)变量。如性别 分k类,k-1个(0,1)变量,如血型。 * 数据格式回归方程 建立回归方程 b1 :相当A 型相对于O 型的差别 b2 :相当B 型相对于O 型的差别 b3 :相当AB 型相对于O 型的差别 * (3)等级 定量。 一般是将等级从弱到强转换为 (或 )如文化程度分为小学、中学、大学、 大学以上四个等级。Y为经济收入。 解释:b(b1)反映X(X1) 增加1个单位, 增加b个单位(如:500元)。 表示中学文化较小学收入多500, 大学较中学多500,余类推。 * b1,b2,b3分别反映中学、大学、大学以上相对于小学文化程度者经济收入差别的大小 也可将K个等级转换为K-1个(0,1)变量 * 2.样本含量: n =(5~10)m。 3.关于逐步回归: 对逐步回归得到的结果不要盲目的信任,所谓的“最优”回归方程并不一定是最好的,没有选入方程的变量也未必没有统计学意义。例如,例15-3中若将选入标准和剔除标准定为 和 选入的变量是 , 而不是 , 结果发生了改变。 不同回归方程适应于不同用途,依专业知识定。 * 4. 多重共线性 即指一些自变量之间存在较强的线性关系。如高血压与年龄、吸烟年限、饮白酒年限等,这些自变量通常是高度相关的,有可能使通过最小二乘法建立回归方程失效,引起下列一些不良后果: (1)参数估计值的标准误变得很大,从而t值变得很小。 (2)回归方程不稳定,增加或减少某几个观察值,估计值可能会发生很大的变化。 (3)t检验不准确,误将应保留在模型中的重要变量舍弃。 (4)估计值的正负符号与客观实际不一致。 消除多重共线性:剔除某个造成共线性的自变量,重建回归方程;合并自变量;采用逐步回归方法。 * * * * * 多元线性回归分析 (Multiple Linear Regression) * Multiple linear regression Choice of independent variable Application * 讲述内容 第一节 多元线性回归 第二节 自变量选择方法 第三节 多元线性回归的应用 及其注意事项 * 目的:作出以多个自变量估计应变量的多元线性回归方程。 资料:应变量为定量指标;自变量全部或大部分为定量指标,若有少量定性或等级指标需作转换。 用途:解释和预报。 意义:由于事物间的联系常常是多方面的,一个应变量的变化可能受到其它多个自变量的影响,如糖尿病人的血糖变化可能受胰岛素、糖化血红蛋白、血清总胆固醇、甘油三脂等多种生化指标的影响。 * 第一节?? 多元线性回归 * 变量:应变量 1 个,自变量m 个,共 m+1 个。 样本含量:n 数据格式见表15-1 回归模

文档评论(0)

ranfand + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档