matlable 人工智能代码(Matlable ai code).docVIP

matlable 人工智能代码(Matlable ai code).doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
matlable 人工智能代码(Matlable ai code)

matlable 人工智能代码(Matlable ai code) % produces the sample points of the specified category and draws them in the diagram X = [0, 1; 0 1]; Limits the scope of a class center Clusters = 5; Number of specified categories Points = 10; % specify the number of points per class Std_dev = 0.05; Standard deviation per category P = nngenc (X, clusters, points, std_dev); The plot (P (1, :), P (2, :), + r); Title ( input sample vector ); Xlabel ( p (1)); Ylabel ( p (2)); % establishment network Net = newc ([0, 1, 0, 1], 5,0.1); The number of neurons is 5 % get the network weight value and plot it on the graph Figure; The plot (P (1, :), P (2, :), + r); W = net. Iw {1} Hold on. The plot (w (:, 1), w (:, 2), ob); Hold off. Title ( enter the sample vector and the initialization weight ); Xlabel ( p (1)); Ylabel ( p (2)); Figure; The plot (P (1, :), P (2, :), + r); Hold on. % training network Net. TrainParam. Epochs = 7; Net = init (net); Net net = train (P); The value of the network weight after training is obtained and plotted on the diagram W = net. Iw {1} The plot (w (:, 1), w (:, 2), ob); Hold off. Title ( input sample vector and updated weight ); Xlabel ( p (1)); Ylabel ( p (2)); A = 0; [0.6; p = 0.8]; A = sim (.net, p) -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- example8_2 The % randomly generated 1000 two-dimensional vectors as samples and plotted their distribution P = rands (2100); The plot (P (1, :), P (2, :), + r) Title ( initial random sample point distribution ); Xlabel ( P (1)); Ylabel ( P (2)); Network, get the initial weight Net = newsom ([0, 1; 0 1], [5, 6]); W1_init = net. Iw {1, 1} The distribution of the initial weights is plotted Figure; Plotsom (w1_init, net. The layers {1}. The distances) The corresponding weight distribution map is shown in the training network For I = 10:30:10 0 Net. TrainParam. Epochs = I; Net net = train (P); Figure; Plotsom (net. Iw {1, 1}, net. The layers {1}. The distances) The end % for the training network, select a speci

文档评论(0)

f8r9t5c + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8000054077000003

1亿VIP精品文档

相关文档