SVM支持向量机算法的详细推导.pdf

  1. 1、本文档共44页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
人工神经网络及应用 第八章支持向量机 主讲 何东健 BP网络及RBF网络解决了模式分类与非线性映射问题。 Vapnik提出的支持向世机(Support Vector Machine, SVM),同样可以解决模式分类与非线性映射问题。 从线性可分模式分类角度看,SVM的主要思想是:建立 一个最优决策超平面,使得该平面两侧距平面最近的两类 样本之间的距离最大化,从而对分类问题提供良好的泛化 能力。根据cover定理:将复杂的模式分类问题非线性地 投射到高维特征空间可能是线性可分的,因此只要特征空 间的维数足够高,则原始模式空间能变换为一个新的高维 特征空间,使得在特征空间中模式以较高的概率为线性可 分的。此时,应用支持向量机算法在特征空间建立分类超 平面,即可解决非线性可分的模式识别问题。 支持向量机基于统计学习理论的原理性方法,因此需要 较深的数学基础。下面的阐述避免过多抽象的数学概念, 推导过程尽量详细。 8.1 支持向量机的基本思想 线性可分数据的二值分类机理:系统随机产生一个 超平面并移动它,直到训练集中属于不同类别的样本 点正好位于该超平面的两侧。显然,这种机理能够解 决线性分类问题,但不能够保证产生的超平面是最优 的。支持向量机建立的分类超平面能够在保证分类精 度的同时,使超平面两侧的空白区域最大化,从而实 现对线性可分问题的最优分类。 什么叫线性可分?就是可以用一条或几条直线把属 于不同类别的样本点分开。实际上,求解分类问题, 就是要求出这条或这几条直线!问题是:怎么求? 进一步理解支持向量机: 支持向量机(Support Vector Machine,SVM )中的 “机(machine,机器)”: 实际上是一个算法。在机器学习领域,常把一些 算法看作是一个机器(又叫学习机器,或预测函数, 或学习函数)。 “支持向量”:则是指训练集中的某些训练点,这些点 最靠近分类决策面,是最难分类的数据点 。 SVM:它是一种有监督(有导师)学习方法,即已知 训练点的类别,求训练点和类别之间的对应关系,以 便将训练集按照类别分开,或者是预测新的训练点所 对应的类别。 SVM主要针对小样本数据进行学习、分类和预测 (有时也叫回归)的一种方法,能解决神经网络不能 解决的过学习问题。类似的根据样本进行学习的方法 还有基于案例的推理(Case-Based Reasoning), 决策树归纳算法等。 过学习问题:训练误差过小导致推广能力下降,即真 实风险的增加。 推广能力:generalization ability,也可以说是泛化能 力,就是对未知样本进行预测时的精确度。 下面讨论线性可分情况下支持向量机的分类原理。 8.1.1 最优超平面的概念 1 1 2 2 p 考虑P个线性可分样本{(X ,d ),(X ,d ),…,(X , p P P p d ),…(X ,d )},对于任一输入样本X ,期望输出 为dp = ±1 (代表两类类别标识)。用于分类 的超平面方程为 WT X+b=0 (8.1) 式中,X为输入向量,W为权值向量,b为偏置 (相当 于前述负阈值),则有 T P p W X +b0 d =+1 T P p W X +b0 d =-1 超平面与最近的样本点之间的间隔称为分离边缘,用ρ表示。 支持向量机的目标是找到一个分离边缘最大的超平面,即最优 超平面。也就是要确定使ρ最大时的W和b。 图8.1给出二维平面中最优超平面的示意图。可以看出,最优 超平面能提供两类之间最大可能的分离,因此确定最优超平面 的权值W 和偏置b 应是唯一的。在

文档评论(0)

新起点 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档