- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于多级特征的行为识别
Action Recognition Using Multilevel Features andLatent Structural SVM 信息与通信工程 曹刘彬 2016.3.21 Abstract 1.We first propose a new low-level visual feature,called spatio-temporal context distribution feature of interest points,to describe human actions. 2.Each action video is expressed as a set of relative XYT coordinates between pairwise interest points in a local region. 3. In order to capture the spatio-temporal relationships at different levels,multiple GMMs are utilized to describe the context distributions of interest points over multiscale local regions. 4. Motivated by the observation that some actions share similar motion patterns, we additionally propose a novel mid-level class correlation feature to capture the semantic correlations between different action classes. 5. Moreover,human actions are often associated with some specific natural environments and also exhibit high correlation with particular scene classes. 6. It is therefore beneficial to utilize the contextual scene information for action recognition. 7. In this paper, we build the high-level co-occurrence relationship between action classes and scene classes to discover the mutual contextual constraints between action and scene. 8. By treating the scene class label as a latent variable, we propose to use the latent structural SVM (LSSVM) model to jointly capture the compatibility between multilevel action feature and action classes, the compatibility between multilevel scene features and scene classes, and the contextual relationship between action classes and scene classes. 9. Extensive experiments on UCF Sports, YouTube and UCF50 datasets demonstrate the effectiveness of the proposed multilevel features and action-scene interaction based LSSVM model for human action recognition. Multilevel Features for Action Description Low-Level Spatio-Temporal Context Distribution Feature Fig. 1 shows some examples of detected interest points of human actions. The subfigures on the left c
您可能关注的文档
最近下载
- 2025年华医网【护理专业题库】- 健康中国背景下的康复护理人工智能新进展.docx VIP
- DB32T-县级(区域)医疗资源集中化运行规范 第6部分:健康随访中心及编制说明.pdf VIP
- 吉林省吉林市昌邑区2023-2024学年四年级上学期数学12月期末试卷.docx VIP
- GB 14784-2013 带式输送机 安全规范.docx VIP
- 安全生产治本攻坚三年行动方案(2024-2026年)解读.pptx VIP
- 2025年大学试题(医学)-中医各家学说笔试考试历年典型考题及考点含含答案.docx
- 劳动合同标准版劳动合同劳动合同.doc VIP
- 【初高中】【期中通用】家长会:5天的努力,2天归零 课件 (共19张PPT).pptx VIP
- 基于MATLAB光伏储能并网的直流微电网系统的研究与设计.doc VIP
- SIEMENS西门子MM430变频器操作说明书.pdf
有哪些信誉好的足球投注网站
文档评论(0)