回归理论与matlab实现概念.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
* * 例3 设某商品的需求量与消费者的平均收入、商品价格的统计数 据如下,建立回归模型,预测平均收入为1000、价格为6时 的商品需求量. 法一 直接用多元二项式回归: x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9]; y=[100 75 80 70 50 65 90 100 110 60]; x=[x1 x2]; rstool(x,y,purequadratic) * * 在画面左下方的下拉式菜单中选”export”, 则beta、rmse和residuals都传送到Matlab工作区中. 在左边图形下方的方框中输入1000,右边图形下方的方框中输入6。 则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791. * * 在Matlab工作区中输入命令: beta, rmse * * 结果为: b = 110.5313 0.1464 -26.5709 -0.0001 1.8475 stats = 0.9702 40.6656 0.0005 法二 将 化为多元线性回归: * * 非线性回 归 (1)确定回归系数的命令: [beta,r,J]=nlinfit(x,y,’model’, beta0) (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 1、回归: 残差 Jacobian矩阵 回归系数的初值 是事先用m-文件定义的非线性函数 估计出的回归系数 输入数据x、y分别为 矩阵和n维列向量,对一元非线性回归,x为n维列向量。 2、预测和预测误差估计: [Y,DELTA]=nlpredci(’model’, x,beta,r,J) 求nlinfit 或nlintool所得的回归函数在x处的预测值Y及预测值的显著性为1-alpha的置信区间Y DELTA. * * 例 4 对第一节例2,求解如下: 2、输入数据: x=2:16; y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76]; beta0=[8 2]; 3、求回归系数: [beta,r ,J]=nlinfit(x,y,volum,beta0); beta 得结果:beta = 11.6036 -1.0641 即得回归模型为: 题目 * * 逐 步 回 归 逐步回归的命令是: stepwise(x,y,inmodel,alpha) 运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History. 在Stepwise Plot窗口,显示出各项的回归系数及其置信区间. Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P. 矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量) 显著性水平(缺省时为0.5) 自变量数据, 阶矩阵 因变量数据, 阶矩阵 * * 例6 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4 有关,今测得一组数据如下,试用逐步回归法确定一个 线性模 型. 1、数据输入: x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]; x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]; x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]; x4=[60 52 20 47 33 22 6 44 22 26 34 12 1

文档评论(0)

1112111 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档