- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
水轮发电机组轴系故障趋势预测与评估论文
华 中 科 技 大 学 硕 士 学 位 论 文
Abstract
Songjianghe cascade is northeast area seven five during the hydropower construc-
tion projects, located in southeastern Jilin province a mountainous area, in recent years,
Songjianghe cascade turbine increasingly large-scale, complex, automation, because the
fault led to the unexpected shutdown will result in serious losses. Fault prediction tech-
nology can effectively avoid accident occurrence and development, to provide advanced
predictive maintenance to provide scientific methods. Therefore, this paper to Songjianghe
cascade hydropower station as the background, the turbine shaft fault trend prediction
method and unit operation state evaluation methods are studied, results of fault diagnosis
and expert decision support system research and development is an important part of the
scientific and reasonable evaluation unit, health status, realize the unit condition mainte-
nance and predictive maintenance lay a solid foundation.
This paper expounds the turbine generator shaft structure, and the fault characteristic
undertook thorough analysis. Research Based on time series autoregressive model analysis
of shafting fault prediction method, the frame vibration and bearing temperature is pre-
dicted and the results were analyzed according to the shafting status data structures, based
on BP neural network unit shafting fault prediction method. In order to overcome the BP
nerve network training slow convergence speed, easy to fall into local minimum point,
LM algorithm is applied to replace the traditional gradient method, so as to improve BP
neural network prediction model of efficiency and accuracy. BP neural network prediction
model and autoregressive prediction models were compared and analyzed, the results
show the improved BP neural network model to predict the effect better than the auto-
regressive model.
In shafting
文档评论(0)