局部放电基本特性.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
局部放电基本特性要点

局部放电基本特性 2.1 局部放电的机理 2.1.1 气隙放电等值电路 绝缘介质内部含有一个气隙时的放电情况是最简单的,如图1.1(a)所示。图中c代表气隙,b是与气隙串联部分的介质,a是除了b之外其他部分的介质。假定这一介质是处在平行板电极之中,在交流电场作用下气隙和介质中的放电过程可以用图l.1(b)所示的等效电路来分析。 假定在介质中的气隙是扁平状而且是与电场方向相垂直,则按电流连续性原理可得 (2.1) 式中、分别气隙和介质上的电压, 、分别为气隙和介质的等效电导?。工频电场中若和均小于10-11((·m)-1,则气隙和b部分绝缘上的电压的数值关系可简化为 (2.2) 式中、分别为气隙和绝缘介质的相对介电常数,气隙和介质中的电场强度Ec、Eb 的关系为 (2.3) 由式(2.3)可见: (1) 气隙放电在工频电场中气隙中的电场强度是介质中电场强度的倍。通常情况下,而,即气隙中的场强要比介质中的高,而另一方面气体的击穿场强一般都比介质的击穿场强低,因此,在外加电压足够高时,气隙首先被击穿,而周围的介质仍然保持其绝缘特性,电极之间并没有形成贯穿性的通道。 (2) 油隙放电在液体和固体的组合绝缘结构中,如油纸电缆、油纸电容器、油纸套管等,由于在制造中采取了真空干燥浸渍等工艺,可以使绝缘体中基本上不含有气隙,但却不可避免地存在着充满绝缘油的间隙,这些油的介电常数通常也比固体介质为小,而击穿场强又比固体介质为低,因此,在油隙中也会发生局部放电,不过与气隙相比要在高得多的电场强度下才会发生。 (3) 在介质中极不均匀电场分布的情况下,即使在介质中不含有气隙或油隙,只要是介质中的电场分布是极不均匀的,也就可能发生局部放电。例如埋在介质中的针尖电极或电极表面上的毛刺,或其它金属屑等异物附近的电场强度要比介质中其他部位的电场强度高得多。当此处局部电场强度达到介质本征击穿场强时,则介质局部击穿而形成了局部放电。 2.1.2 放电过程 在气隙发生放电时,气隙中的气体产生游离,使中性分子分离为带电的质点,在外加电场作用下,正离子沿电场方向移动,电子(或负离子)沿相反方向移动,于是这些空间电荷建立了与外施电场方向相反的电场 (如图2.2(a)所示),这时气隙内的实际场强为 (2.4) 即气隙上的电场强度下降了E内,或者说气隙上的电压降低了(Uc。于是气隙中的实际场强低于气体击穿场强ECB,气隙中放电暂停。在气隙中发生这样一次放电过程的时间很短,约为10-8数量级,在油隙中发生这样一次放电过程的时间比较长,可达10-6数量级。 如果对照图2.2(b)分析放电过程,外施电压是正弦交流电压,当电压瞬时值上升使得气隙上的电压uc达到气隙的击穿电压UCB时,气隙发生放电。由于放电的时间极短,可以看作气隙上的电压由于放电而在瞬间下降了(uc,于是气隙上的实际电压低于气隙的击穿电压,放电暂停(这相应于图2.2(b)中的点1)。此后气隙上的电压随外加电压瞬时值的上升而上升,直到气隙上的电压又回升到气隙的击穿电压UCB时,气隙又发生放电,在此瞬间气隙上的电压又下降(uc,于是放电又暂停。假定气隙表面电阻很高,前一次放电产生的空间电荷没有泄漏掉,则这时气隙中放电电荷建立的反向电压为-2(uc。依此类推如果在外加电压的瞬时值达到峰值之前发生了n次放电,每次放电产生的电荷都是相等的,则在气隙中放电电荷建立的电压为-n(uc。在外加电压过峰值后,气隙上的外加电压分量u外逐渐减小,当u外=n(uc时,气隙上的实际电压为零(图2.2(b)中点2)。 外施电压的瞬时值继续下降,当(u外-n(uc (=UCB时,即气隙上实际的电压达到击穿电压时,气隙又发生放电,不过放电电荷移动的方向决定于此前放电电荷所建立的电场E内,于是减少了原来放电所积累的电荷,使气隙上的实际电压为(u外-n(uc (UCB时,于是放电暂停(相应图2.2(b)中的点3)。此后随外施电压继续下降到负半周,当重新达到(-u外-(n-1)(uc (=UCB时,气隙又发生放电,放电后气隙上的电压为(-u外-(n-2)(uc (UCB,放电又停止。依此类推直到外加电压达到负峰值,这时气隙中放电电荷建立的电压为n(uc。 随着电压回升,在一段时间内(u外+n(uc (UCB不会出现放电,直到(u外+n(uc (=UCB时气隙又发生放电。放电后气隙上的电压为(u外+(n-1)(uc (UCB,于是放电又暂停(相应图2.2(b)中点4)。此后随着外加电压升高放电又继续出现。 由此可见,在正弦交流电

文档评论(0)

dajuhyy + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档