ansys关于薄板、厚板、壳单元的特性区别.docVIP

ansys关于薄板、厚板、壳单元的特性区别.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
一、 板壳弯曲理论简介 1. 板壳分类 按板面内特征尺寸与厚度之比划分: 当 L/h (5~8) 时为厚板,应采用实体单元。 当 (5~8) L/h (80~100) 时为薄板,可选 2D 实体或壳单元 当 L/h (80~100) 时为薄膜,可采用薄膜单元。 壳类结构按曲率半径与壳厚度之比划分: 当 R/h = 20 时为薄壳结构,可选择薄壳单元。 当 6 R/h 20 时为中厚壳结构,选择中厚壳单元。 当 R/h = 6 时为厚壳结构。 上述各式中 h 为板壳厚度, L 为平板面内特征尺度,R 为壳体中面的曲率半径。 2. 薄板理论的基本假定 薄板所受外力有如下三种情况: ① 外力为作用于中面内的面内荷载。弹性力学平面应力问题。 ② 外力为垂直于中面的侧向荷载。薄板弯曲问题。 ③ 面内荷载与侧向荷载共同作用。 所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。 薄板通常采用 Kirchhoff-Love 基本假定: ① 平行于板中面的各层互不挤压,即 σz = 0。 ② 直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。 ③ 中面内各点都无平行于中面的位移。 薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。 3. 中厚板理论的基本假定 考虑横向剪切变形的板理论,一般称为中厚板理论或 Reissner(瑞斯纳)理论。该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。 自 Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。但大致分为两类,如 Mindlin(明特林)等人的理论和 Власов(符拉索夫)等人的理论。 厚板理论是平板弯曲的精确理论,即从 3D 弹性力学出发研究弹性曲面的精确表达式。 4. 薄壳理论的基本假定 也称为 Kirchhoff-Love(克希霍夫-勒夫)假定: ①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。 ②平行于中曲面的面素上的正应力与其它应力相比可忽略不计。 但上述假定同时假定了两种不相容的变形状态,即平面应变和平面应力状态。因此许多学者提出了许多修正理论,但是只要是基于 Kirchhoff-Love 假定为基础的薄壳理论,其精度都不会超过 Kirchhoff-Love 理论的精度范围。 为构造协调的薄板壳单元,可采用多种方法,如增加自由度法、再分割法(也称复合法)、离散克希霍夫(Discrete Kirchhoff Theory)法等,但都适用于薄板壳结构,也不考虑横向剪切变形的影响。 5. 考虑横向剪切变形的壳理论 可考虑横向剪切变形影响的理论,一般称为 Mindlin-Reissner 理论,是将 Reissner 关于中厚板理论的假定推广到壳中。 二、 板壳有限元与 SHELL 单元 薄板壳单元基于 Kirchhoff-Love 理论,即不计横向剪切变形的影响;中厚板壳单元则基于 Mindlin-Reissner 理论,考虑横向剪切变形的影响。 在 ANSYS中,SHELL 单元采用平面应力单元和板壳弯曲单元的叠加。除 SHELL63、SHELL51、SHELL61 不计横向剪切变形外(可用于薄板壳分析),其余均计入横向剪切变形的影响(可用于中厚板壳分析)。 对于板壳单元还应注意以下几个问题: ⑴ 面内行为 由于面内采用平面应力状态,因此不存在“体积锁死”问题,但“剪切自锁”问题依然存在,因此许多单元采用了 ESF 以响应面内行为, 如 SHELL41、SHELL43 和 SHELL63 单元等,SHELL181 支持横向剪切刚度的读入。 ⑵ 面内转动自由度 面内转动自由度(Drilling DOF,简称 DDOF)也称为法线自转自由度、旋转自由度、第 6 自由度等,因面内平动自由度可完全描述面内行为,故 DDOF 为“虚假”的自由度,其引入目的是便于单元刚度矩阵的转换。该自由度对应一“假设刚度”,为防止整体刚度矩阵奇异,其处理一般有 3 种方法: ① 扭簧型刚度:赋予极小值(如1 . 0 E-5),如 SH

文档评论(0)

185****7617 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档