- 1、本文档共27页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Weka分类演示
Petra.Kralj@ijs.si
Classification in WEKA
2009/11/10
Petra Kralj Novak
Petra.Kralj@ijs.si
Petra.Kralj@ijs.si
Practice with Weka
1. Build a decision tree with the ID3
algorithm on the lenses dataset,
evaluate on a separate test set
2. Classification on the CAR dataset
– Preparing the data
– Building decision trees
– Naive Bayes classifier
– Understanding the Weka output
Petra.Kralj@ijs.si
Weka
Weka is open source softwere for machine learning and data mining.
http://www.cs.waikato.ac.nz/ml/weka/
Download
version
3.6
Petra.Kralj@ijs.si
Run Weka
Choose Explorer
Petra.Kralj@ijs.si
Exercise 1: Lenses dataset
• In the Weka data mining tool induce a decision
tree for the lenses dataset with the ID3
algorithm.
• Data:
– lensesTrain.arff
– lensesTest.arff
• Compare the outcome with the manually
obtained results.
Petra.Kralj@ijs.si
Load the data
Petra.Kralj@ijs.si
Load the data - 2
lensesTrain.arff
Petra.Kralj@ijs.si
The data are loaded
Choose
“Classify”
Target variable
Petra.Kralj@ijs.si
Choose algoritem
文档评论(0)