- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
数据挖掘在高校信息管理中的应用分析.doc
数据挖掘在高校信息管理中的应用分析 摘 要:该文的研究视角是一直比较热门的数据挖掘问题,笔者根据自己多年的高校教学管理经验,发现各个高校信息管理系统中积累了大量的教学管理数据,利用数据挖掘技术系统研究分析出教学、管理、科研等领域存在的问题和取得的成就,并根据发现的问题给出一些建议。 中国 1/vie 关键词:数据挖掘 高校信息管理 应用分析 中图分类号:G647 文献标识码:A :1674-098X(2016)11(b)-0109-02 高校多年来的教学管理工作积累了大量的数据,是一个待开发的宝藏。鉴于高校发展的需求和高校信息管理的现状,利用这些数据理性地分析高校各方面工作的成效以及学生培养过程的得失变得十分重要。该文将结合高校信息管理系统的现状和数据挖掘技术的功能,分别从教学、管理、科研等方面出发,系统研究和分析数据挖掘技术在高校各领域中的应用。 1 教学领域 教学是高校职能的核心,是关系学生业务能力和综合素质培养的关键因素,数据挖掘在教学领域的应用也显得尤为重要。 (1)课程设置层面。从某种程度上讲,学生在校学习过程中的课程学习属于循序渐进的过程,而且课程之间存在着相对较强的关联关系以及先后顺序。通常情况下,在完成一项课程学习之前,应学习一些基础性的先行课程,若是这些先行课程没有学好,则会严重影响之后那些课程项目的学习效果。借助高校教学资源库当中的历届学生成绩档案,在科学化数据挖掘以及合理化数据关联的基础上,可以从海量数据当中挖掘有用信息,从而更好地帮助其分析数据间的回归性功能与相关性联系,最终获得价值性较强的规律。在此基础上就可以比较顺利地寻找学生成绩下降的原因,进而对课程设置实施科学化的安排。 (2)学生自身的学习评价。目前,学习评价属于高校教育工作人员的重要职责。对学生自身的学习行为进行判定,不仅可以起到相应的信息反馈作用,有效激发学生所具有的学习动机,还可以检查课程计划以及检验教学目的。除此之外,学习评价还是判定学生个性化差异的重要手段,有利于高校教师因材施教。借助相应的数据挖掘工具,可以对高校学生成绩数据库以及行为记录库等实施仔细分析与处理,得到即实性的评价结果,及时纠正学生的不良行为,克服教师在学生评价上因主观因素造成的不公平问题,还能够减轻教师在学习评价环节的工作量。 (3)课堂教学评价。该教学环节不仅可以起到良好的教学调节作用以及教学指导作用,还有着相对较强的导向性特点,属于高校管理工作的组成部分之一,同时也是高校教学评价工作的关键性手段。一般情况下,高校每学期都会搞专业化的教学评价调查,进而积累丰富数据,探讨教学效果水平高低与教师自身的年龄和职称间的联系,从而为高校教务科提供决策信息,提高高校教学效果。 (4)教务数据分析。目前高校在校学生人数已经超过几千甚至上万,教师队伍也相当强大,经过几十年的教学管理,教务数据已经达到海量,而目前对于这些数据的应用还仅仅停留在查询或简单统计,隐藏在这些数据中的大量宝贵信息还没有被发现,例如,学生后续课程的成绩到底与哪些前导课程有关;影响学生学习成绩的因素到底有多少;不同专业学生的差异性有多少等。这些都可以通过数据挖掘工具在海量的教务数据库中获得。 2 管理领域 将数据挖掘技术应用到高校日常管理工作中,不仅能够提升高校管理效率,而且能够为高校管理工作提供数据支撑和决策支持。 (1)干部考评管理。主要对高校干部进行年度考核。其作用是为了更清楚地掌握干部的个体情况,并且提供近期或动态信息。考核既是了解掌握干部情况的一个重要手段,同时也是正确实施奖惩和选拔使用干部的必要前提。结合高校现有的干部管理数据库,从干部管理数据库和职称考评数据中进行数据挖掘,找出干部工作状态和干部的年龄、职务、学历、专业、任职经历等方面的关联,找到高校干部成长进步和干部整体素质的关系,做到合理调配使用干部,为人事部门提供科学的决策信息。 (2)学生特征的仔细挖掘。结合高校学生在基础性信息、学习经历以及兴趣特征等方面的实际情况来针对性挖掘高校学生的个性化特征,从而帮助学生及时修正自身所具有的不良学习行为。凭借对高校学生特征的详细分析结果与目的制定之间的对比,高校教师可以很好地帮助学生纠正学习行为,促进学习能力的提升,日益完善学生人格,从根本上实现学生综合素质的大力培养。 (3)人员行为干预。高校教学管理数据库中记录着各届学生与教师的学习、工作、社会活动、奖励、处罚等情况,利用数据挖掘的关联分析,寻找师生各种行为活动之间的内在联系。例如,通过分析挖掘历年管理数据发现,临近学年结束时,毕业学生极易出现酗酒违纪事件,也就是:“学年结束”and“毕业学生”=“酗酒违纪”这一关联规则的支持度和置信度非常高。所以在实际的管理工作
文档评论(0)