- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
生产运营课件3
FORECAST: A statement about the future value of a variable of interest such as demand. Forecasts affect decisions and activities throughout an organization Accounting, finance Human resources Marketing MIS Operations Product / service design Uses of Forecasts Assumes causal systempast == future Forecasts rarely perfect because of randomness Forecasts more accurate forgroups vs. individuals Forecast accuracy decreases as time horizon increases Elements of a Good Forecast Steps in the Forecasting Process Types of Forecasts Judgmental - uses subjective inputs Time series - uses historical data assuming the future will be like the past Associative models - uses explanatory variables to predict the future Judgmental Forecasts Executive opinions Sales force opinions Consumer surveys Outside opinion Delphi method Opinions of managers and staff Achieves a consensus forecast Time Series Forecasts Trend - long-term movement in data Seasonality - short-term regular variations in data Cycle – wavelike variations of more than one year’s duration Irregular variations - caused by unusual circumstances Random variations - caused by chance Forecast Variations Naive Forecasts Na?ve Forecasts Simple to use Virtually no cost Quick and easy to prepare Data analysis is nonexistent Easily understandable Cannot provide high accuracy Can be a standard for accuracy Uses for Na?ve Forecasts Stable time series data F(t) = A(t-1) Seasonal variations F(t) = A(t-n) Data with trends F(t) = A(t-1) + (A(t-1) – A(t-2)) Techniques for Averaging Moving average Weighted moving average Exponential smoothing Moving Averages Moving average – A technique that averages a number of recent actual values, updated as new values become available. Weighted moving average – More recent values in a series are given more weight in computing the forecast. Simple Moving Average Exponential Smoothing Premise--The most recent observations might have the highest predictive value. Therefore, we should give more we
文档评论(0)