PixFeedAnImagePubSubSystem.docxVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
PixFeedAnImagePubSubSystem.docx

PixFeed An Image PubSub System Shyam Naren Kandala Anjaneya Srujan Narkedamalli Karan Mehta Computer Engineering Introduction Motivation A reliable cloud based pub-sub system to deliver images based on content of image Users can subscribe to images based on descriptive tags Eg: “train”. Users can upload images, select from suggested tags or provide custom tags. Similar to Instagram but subscription based on image content rather than publisher. Use case: Subscribe to all images from an ongoing event Architecture   System Components Amazon S3 cloud storage is used for storing the images. S3 is integrated with Amazon CloudFront CDN for faster delivery of images. Apache Kafka is message broker for publish subscribe mechanism Backend server: REST APIs built in Node.JS Android application for user interface Clarifai API for suggesting tags based on image recognition Implementation User uploads the image using PixFeed mobile app (Image available through S3 URL) Users can share images by selecting auto suggested tags or providing custom tags Image URL pushed on Kafka topic corresponding to a image tag Users can subscribe to image feeds based on tags Images delivered based on Kafka topic consumption offset Challenges Configuration of initial system Libraries for Kafka-Node.js interconnection have lot of external dependencies Difficult to test on Windows Platform As a solution, we used Cloud9, online IDE with Linux shell Partitioning and Replication of topics Multiple libraries available for Kafka-Node.js interconnection, but none of them support this functionality Possible through shell commands As an alternative, we spawned a child process that ran a shell command Performance Evaluation Application Server Specifications 512 MB RAM 2 GB Disk Space Load testing with JMeter Produce API Response time Create topic API Response time Subscribe and fetch API Response time Kafka choking point Effects of scaling Improvements with CDN PixFeed Demo PixFeed Demo part 1: /open?id=0B1z

文档评论(0)

tangtianxu1 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档