Python的隐马尔科夫HMMLearn库的应用教学选编.docxVIP

Python的隐马尔科夫HMMLearn库的应用教学选编.docx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Python的隐马尔科夫HMMLearn库的应用教学选编

Python HMMLearn Tutorial Edited By 毛片物语 hmmlearn?implements the Hidden Markov Models (HMMs). The HMM is a generative probabilistic model, in which a sequence of observable?\(\mathbf{X}\)?variables is generated by a sequence of internal hidden states?\(\mathbf{Z}\). The hidden states are not be observed directly. The transitions between hidden states are assumed to have the form of a (first-order) Markov chain. They can be specified by the start probability vector?\(\boldsymbol{\pi}\)?and a transition probability matrix?\(\mathbf{A}\). The emission probability of an observable can be any distribution with parameters?\(\boldsymbol{\theta}\)?conditioned on the current hidden state. The HMM is completely determined by?\(\boldsymbol{\pi}\),?\(\mathbf{A}\)?and?\(\boldsymbol{\theta}\). There are three fundamental problems for HMMs: Given the model parameters and observed data, estimate the optimal sequence of hidden states. Given the model parameters and observed data, calculate the likelihood of the data. Given just the observed data, estimate the model parameters. The first and the second problem can be solved by the dynamic programming algorithms known as the Viterbi algorithm and the Forward-Backward algorithm, respectively. The last one can be solved by an iterative Expectation-Maximization (EM) algorithm, known as the Baum-Welch algorithm. References: [Rabiner89]Lawrence R. Rabiner “A tutorial on hidden Markov models and selected applications in speech recognition”, Proceedings of the IEEE 77.2, pp. 257-286, 1989. [Bilmes98]Jeff A. Bilmes, “A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models.”, 1998.Available models  HYPERLINK http://hmmlearn.readthedocs.io/en/stable/api.html \l hmmlearn.hmm.GaussianHMM \o hmmlearn.hmm.GaussianHMM hmm.GaussianHMMHidden Markov Model with Gaussian emissions. HYPERLINK http://hmmlearn.readthedocs.io/en/stable/api.html \l hmmlearn.hmm.GMMHMM \o hmmle

文档评论(0)

jiayou10 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8133070117000003

1亿VIP精品文档

相关文档