机器视觉在焊点检测中的应用.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
机器视觉在焊点检测中的应用

机器视觉在焊点检测中的应用 杨英豪 柳青 崔洁 (中国电子科技集团公司第四十五研究所,北京101601) 摘 要:本文主要阐述了利用图像处理的一些算法来对半导体封装过程中的焊点进行检测,主要包括了图像预处理,自动阈值图像分割,图像膨胀,空洞填充,图像连通,区域开圆运算,形状检测,计算区域特征等算法。并通过大量实验确定了参数,得到一种确实可行的应用方法去完成焊点的检测。 关键词:半导体设备;机器视觉;焊点检测(PBI); Application of Inspect ball bonding with Machine Vision Yang Yinghao Liu Qing Cui Jie Abstract: This article introduces inspecting ball bonding with some Machine Vision algorithm on process of encapsulating semiconductor device, which mainly contain Image Pretreatment, Image Segmentation with auto threshold, Image expanding, File up hole, Image connection, Generate circle region , Inspect circularity shape, Calculate Circle radius. Then we can get a good method to achieve Inspecting ball bonding through make a lot of experiments to decide the parameter. Keywords: semiconductor device; Machine Vision; Inspect ball bonding 1.引言 如今伴随数字产品已在人们生活中的大量使用,半导体设备制造业得到迅猛的发展,键合机就是半导体封装其中很重要的一个工序,而焊线后检测(PBI:Post Bond Inspect)又是键合机提高机器性能,拓展机器功能的一个重要课题。 目前流行的焊线质检方式是焊完线后人工质检,浪费人力,且不能实时完成质检。而本文就如何利用机器视觉自动实现精准,快速,稳定的焊线后检测进行了讨论和研究——本文主要检测的是焊球的位置和偏差,得到了一种性能优越的图像处理方法,经过实验验证,精度可以达98%以上。 2.半导体机器视觉系统构成 机器视觉系统的主要目的是给机器或自动生产线添加一套类似人眼的视觉系统。其原理是由计算机或图像处理器以及相关的设备来模拟人的视觉行为,完成得到人的视觉系统所得到的信息。 机器视觉系统构成: 1.图像获取:照明光源,光学镜头,工业相机,图像采集卡。 2.图像处理:图像处理软件。 图2-1 机器视觉系统 3.PBI(焊线检测)算法的原理及实现 原理:利用图像形态学的原理从图像中提取出球的信息,根据指定位置上的焊球信息,来判定焊线情况。 其形态学完成PBI的流程如下。 3.1图像增强(?image intensification ) 增加图像对比度,放大差异信息,称之为图像增强。 包含了对比度变换、 空间滤波等方法, 选取区域,使用非线性变换图像增强的示例如下: 图3-1 图像增强示例 图片当中,区域内是图像增强后的效果。 3.2图像分割(image segmentation) 图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过。包含了基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。 本文选取的是基于自动阈值的图像分割方法来完成了图像分割。 其中,阈值T是根据图像区域的均值m,和方差a自动计算出来的。 经过图像分割所处理的结果如下图所示: 图3-2 图像分割示例 图片当中的黄色的线是分割出来的区域边界。 3.3图像膨胀和腐蚀 腐蚀的原理是:用一个结构元素扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为1,则该像素为1,否则为0.膨胀原理则相反,上诉的两种像素之间做“或”操作。 腐蚀的作用是消除物体消除物体边界点,使目标缩小,可以消除小于结构元素的噪声点;膨胀的作用是将与物体接触的所有背景点合并到物体中,使目标增大,,可添补目标中的空洞。 开运算是先腐蚀后膨胀的过程,可以消除图像上细小的噪声,并平滑物体边界。闭运算是先膨胀后腐蚀的过程,可以填充物体内细小的空洞,并平滑边界。

文档评论(0)

haihang2017 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档