- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Learning Interestingness Measures in Terminology Extraction. A ROC-based approach
Learning Interestingness Measures in Terminology Extraction A ROC-based approach Mathieu Roche and Je?ro?me Aze? and Yves Kodratoff and Miche?le Sebag Abstract. In the field of Text Mining, a key phase in data prepa- ration is concerned with the extraction of terms, i.e. collocation of words attached to specific concepts (e.g. Philosophy-Dissertation). In this paper, Term Extraction is formalized as a supervised learning task, extracting a ranking hypothesis from a set of terms labeled as relevant/irrelevant by the expert. This task is tackled using the evolu- tionary algorithm ROGER, optimizing the area under the ROC curve attached to a ranking hypothesis. Empirical validation on two real-world applications demonstrates outstanding improvements compared to state-of-art interestingness measures in Term Extraction. The approach is found robust across domains (Molecular Biology, Curriculum Vit?) and languages (En- glish, French). 1 INTRODUCTION Besides the known difficulties of data mining [19], text mining presents specific difficulties due to the structure of documents and natural language [15, 20]. In particular, the construction of ontologies or terminologies [4, 22], a central task in text mining, aims at control- ling the polysemy and synonymy phenomenons through structuring the words and their meanings in the application domain. A preliminary for ontology construction is to extract the domain terms, or word collocations [4, 18, 22, 30]. Indeed, the meaning of a term (e.g. attribute-value representation) is not related to the mean- ing of its components in a simple way. Therefore, terms must be ex- tracted to enable the conceptual analysis of the corpus documents. Term extraction involves two tasks: detecting “interesting” col- location of words (candidate terms); classifying them according to classes predefined by the expert. This paper focuses on the detection of interesting terms, and more precisely on defining an interestingness measure on the word collo-
您可能关注的文档
- Java编程小技巧(二).pdf
- jdvbelts@earthlinknet.pdf
- JCS40Data Analysis- Standard Analysis PackageSample Standar.ppt
- jeep product plan in the 5 years.pdf
- Jet Speeds in Wide Angle Tailed Radio Galaxies.pdf
- JavaScript编写类的扩展方法.pdf
- JBC焊接台产品目录.pdf
- JDK1.8-NewFeatures[张振华.Jack].pdf
- JFE(015-03)Method of Prior Austenite Grain Refining Using Induction Hardening.pdf
- JIS B1855-1991 Grooved pulleys for narrow V-belts.pdf
最近下载
- 中国药科大学生物化学重点.doc VIP
- 武汉科技大学353卫生综合2020年考研真题(含标准答案).pdf VIP
- 南通蓝印花布印染技艺 生活应用精品 头巾.ppt VIP
- 2025云南省高等职业技术教育招生考试计算机信息类(技能考核)试题(C1).doc VIP
- 干式电力变压器调试方案.docx VIP
- 大数据治理平台建设与应用解决方案(41页).pptx VIP
- 2025年中国医药集团有限公司校园招聘笔试备考试题及答案解析.docx VIP
- 14J936 变形缝建筑构造.docx
- 雨课堂学堂在线《现代酿酒科学与技术(天津科技)》学堂云单元测试考核答案.pdf
- 第三部分:沈阳市情.docx VIP
有哪些信誉好的足球投注网站
文档评论(0)