Gopinath, “Extended mllt for gaussian mixture models.pdfVIP

Gopinath, “Extended mllt for gaussian mixture models.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Gopinath, “Extended mllt for gaussian mixture models

Extended MLLT for Gaussian Mixture Models Peder A. Olsen and Ramesh A. Gopinath IBM, T. J. Watson Research Center 134 and Taconic Parkway Yorktown Heights, NY 10598 (914) 945 {3772,2794}, (fax) (914) 945 4490 {pederao,rameshg}@ EDICS Category SA 1.6.4 Prior to publication, please maintain the enclosed paper in confidence and use it only for purposes of evaluating the merit of the proposed paper, and other activities reasonably related to the review process, and please do not make it available, in whole or in part, to the public. The authors thanks IEEE Trans- actions in Speech and Audio Processing for their courtesy and professionalism in this matter. Abstract In MLLT the inverse covariance matrix (precision matrix) of Gaus- sian mixture component j, j = 1, . . . , m is modeled by AT ΛjA, where Λj ∈ Rd×d+ are diagonal matrices and A ∈ Rd×d is a global data trans- formation matrix. This framework is extended to consider Λj ∈ RD×D and A ∈ RD×d for D ≥ d. The model uses a naturally approximating basis expansion for positive definite matrices and yields greater control of the number of parameters used in modeling covariances than methods considered by previous authors. Moreover, the method yields a practical solution to the design of the matrix considered in the recently proposed MLT model. The extended MLLT (EMLLT) model can be viewed as a generalization of several other covariance modeling techniques such as Fac- tor Analysis [26]. Experimental results in a speech recognition task shows a relative gain of 35% over a baseline diagonal covariance model and 28% over the MLLT model corresponding to the baseline when D = 14d. The EMLLT model yields a surprising 16% relative gain over a full covariance model. Also EMLLT is invariant to linear transformations of the data. 1 Introduction The Gaussian mixture model can be written f(x|Θ) = m∑ j=1 πjN (x;μj , Σj) (1) 1 where x = (x1, . . . , xd)T ∈ Rd×1, Θ = (π?, μ?, Σ?), π? = (π1, . . . , πm) ∈ R+1×m, 1 = ∑m j=1 πj μ? = (μ1, .

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档