FOR HANDWRITTEN DIGIT RECOGNITION TROUGH PARTITIONING OF THE FEATURE SET.pdf

FOR HANDWRITTEN DIGIT RECOGNITION TROUGH PARTITIONING OF THE FEATURE SET.pdf

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
FOR HANDWRITTEN DIGIT RECOGNITION TROUGH PARTITIONING OF THE FEATURE SET

[esta nacionalna konferencija so me|unarodno u~estvo ETAI2003 Sixth National Conference With International Participation ETAI2003 Ohrid, Republika MAKEDONIJA ? Ohrid, Republic of MACEDONIA 17–20. IX 2003 I4–2 COOPERATION OF SUPPORT VECTOR MACHINES FOR HANDWRITTEN DIGIT RECOGNITION TROUGH PARTITIONING OF THE FEATURE SET Dejan Gorgevik1, Dusan Cakmakov2 1 University “Sv. Kiril i Metodij”, Faculty of Electrical Eng., Department of Computer Science and In- formation Technology, Karpos II bb, POBox 574, 1000 Skopje, Macedonia, dejan@etf.ukim.edu.mk 2 University “Sv. Kiril i Metodij”, Faculty of Mechanical Eng., Department of Mathematics and Com- puter Science, Karpos II bb, POBox 464, 1000 Skopje, Macedonia, dusan@mf.ukim.edu.mk Abstract – In this paper, various cooperation schemes of SVM (Support Vector Machine) classifiers applied on two feature sets for handwritten digit recognition are examined. We start with a feature set composed of structural and statistical features and corres- ponding SVM classifier applied on the comp- lete feature set. Later, we investigate the vari- ous partitions of the feature set as well as the advantages and weaknesses of various decisi- on fusion schemes applied on SVM classifiers designed for partitioned feature sets. The ob- tained results show that it is difficult to exce- ed the recognition rate of a single SVM classi- fier applied straightforwardly on the comple- te feature set. Additionally, we show that the partitioning of the feature set according to feature nature (structural and statistical fea- tures) is not always the best way for designing classifier cooperation schemes. These results impose need of special feature selection pro- cedures for optimal partitioning of the featu- re set for classifier cooperation schemes. Index terms – classification, committee, featu- res, rejection, reliability 1. INTRODUCTION The classical paradigm for character recognition is concentrated around two

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档