Entropy Rate Superpixel Segmentation.pdf

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Entropy Rate Superpixel Segmentation

Entropy Rate Superpixel Segmentation Ming-Yu Liu ? Oncel Tuzel ? Srikumar Ramalingam ? Rama Chellappa ? ? University of Maryland College Park ? Mitsubishi Electric Research Labs {mingyliu,rama}@ {oncel,ramalingam}@ Abstract We propose a new objective function for superpixel seg- mentation. This objective function consists of two compo- nents: entropy rate of a random walk on a graph and a balancing term. The entropy rate favors formation of com- pact and homogeneous clusters, while the balancing func- tion encourages clusters with similar sizes. We present a novel graph construction for images and show that this construction induces a matroid— a combinatorial structure that generalizes the concept of linear independence in vec- tor spaces. The segmentation is then given by the graph topology that maximizes the objective function under the matroid constraint. By exploiting submodular and mono- tonic properties of the objective function, we develop an ef- ficient greedy algorithm. Furthermore, we prove an approx- imation bound of 1 2 for the optimality of the solution. Exten- sive experiments on the Berkeley segmentation benchmark show that the proposed algorithm outperforms the state of the art in all the standard evaluation metrics. 1. Introduction Superpixel segmentation is an important module for many computer vision applications such as object recogni- tion [15], image segmentation [20, 8], and single view 3D reconstruction [7, 19]. A superpixel is commonly defined as a perceptually uniform region in the image. The major advantage of using superpixels is computa- tional efficiency. A superpixel representation greatly re- duces the number of image primitives compared to the pixel representation. For instance, in an L-label labeling prob- lem, the solution space for a pixel representation is Ln where n is the number of pixels— typically 106; in con- trast, the solution space for a superpixel representation is Lm where m is the number of superpixels— typically 102 (

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档