Flexible Discriminant Analysis Penalized Discriminant Analysis Mixture Discriminant Analysi.pdf
- 1、本文档共28页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Flexible Discriminant Analysis Penalized Discriminant Analysis Mixture Discriminant Analysi
Support Vector Machines
and
Flexible Discriminants
Chapter 12: Hastie et al. (2001)
Madhusudana Shashanka
Department of Cognitive and Neural Systems
Boston University
CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.1/28
Overview
Part I – SVMs
Support Vector Classifier
Support Vector Machines
Part II – Flexible Discriminants
Flexible Discriminant Analysis
Penalized Discriminant Analysis
Mixture Discriminant Analysis
CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.2/28
Introduction
Generalizations of linear decision boundaries for
classification.
Optimal separating hyperplanes for linearly separable
classes.
Extensions to the non-separable case generalize to support
vector machines.
SVM - produce nonlinear decision boundaries by
constructing a linear boundary in a large, transformed space.
CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.3/28
Separating Hyperplanes - Recap
Consider classes separable by a linear boundary.
Data of the form (xi, yi) with xi ∈ Rp, yi ∈ {?1, 1}
?i = 1, 2, . . . , N .
Define a hyperplane {x : f(x) = xT β + β0 = 0}.
Find the hyperplane that creates the biggest margin between
the training points for classes -1 and 1.
minβ,β0
1
2 ||β||2 subject to yi(xTi β + β0) ≥ 1, i = 1, 2, . . . , N .
Margin is C = 1/||β||.
Classification rule G(x) = sign[xT β + β0].
Convex optimization problem: quadratic criterion and linear
inequality constraints.
CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.4/28
Non-separable classes
margin
A
A
F
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
? ?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?? ca
d
b
e
A
A
F
margin
Allow some points on the wrong side.
Define slack variables ξ = (ξ1, ξ2, . . . , ξn).
Modify the constraint as: yi(xTi β + β0) ≥ C(1 ? ξi),
?i, ξi ≥ 0,
∑N
i=1 ξi ≤ constant.
Misclassifications occur when ξi 1.
CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.5/28
Support Vector Classifier
minβ,β0
1
2 ||β||2 + γ
∑N
i=1 ξi
subject to ξi ≥ 0, yi(xTi βxi + b) ≥ 1 ? ξi?i.
LP =
1
2
||β||2 + γ
您可能关注的文档
- EN71-1 2005 & EN 71-2 2006.pdf
- EN71-3必威体育精装版法规标准更新.pdf
- Enabling Custom Enhancements in Digital Sports Broadcasts.pdf
- endothelial progenitor cells.pdf
- ENEOS UNI Powder Presentation for _.pdf
- Energy expenditure and balance following pediatric intensive care unit admission.pdf
- Energy mapping of existing building stock in Spain.pdf
- Energy Spectrum Measurement of the Multipacting Electons the SPS. Analysis the Possible Uti.pdf
- ENERGY COAL.pdf
- Energy Deposition in the NuMI Neutrino Beam-Line.pdf
文档评论(0)