Flexible Discriminant Analysis Penalized Discriminant Analysis Mixture Discriminant Analysi.pdf

Flexible Discriminant Analysis Penalized Discriminant Analysis Mixture Discriminant Analysi.pdf

  1. 1、本文档共28页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Flexible Discriminant Analysis Penalized Discriminant Analysis Mixture Discriminant Analysi

Support Vector Machines and Flexible Discriminants Chapter 12: Hastie et al. (2001) Madhusudana Shashanka Department of Cognitive and Neural Systems Boston University CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.1/28 Overview Part I – SVMs Support Vector Classifier Support Vector Machines Part II – Flexible Discriminants Flexible Discriminant Analysis Penalized Discriminant Analysis Mixture Discriminant Analysis CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.2/28 Introduction Generalizations of linear decision boundaries for classification. Optimal separating hyperplanes for linearly separable classes. Extensions to the non-separable case generalize to support vector machines. SVM - produce nonlinear decision boundaries by constructing a linear boundary in a large, transformed space. CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.3/28 Separating Hyperplanes - Recap Consider classes separable by a linear boundary. Data of the form (xi, yi) with xi ∈ Rp, yi ∈ {?1, 1} ?i = 1, 2, . . . , N . Define a hyperplane {x : f(x) = xT β + β0 = 0}. Find the hyperplane that creates the biggest margin between the training points for classes -1 and 1. minβ,β0 1 2 ||β||2 subject to yi(xTi β + β0) ≥ 1, i = 1, 2, . . . , N . Margin is C = 1/||β||. Classification rule G(x) = sign[xT β + β0]. Convex optimization problem: quadratic criterion and linear inequality constraints. CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.4/28 Non-separable classes margin A A F ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ca d b e A A F margin Allow some points on the wrong side. Define slack variables ξ = (ξ1, ξ2, . . . , ξn). Modify the constraint as: yi(xTi β + β0) ≥ C(1 ? ξi), ?i, ξi ≥ 0, ∑N i=1 ξi ≤ constant. Misclassifications occur when ξi 1. CN700 - SVMs/Flexible Discriminants March 23, 2004 – p.5/28 Support Vector Classifier minβ,β0 1 2 ||β||2 + γ ∑N i=1 ξi subject to ξi ≥ 0, yi(xTi βxi + b) ≥ 1 ? ξi?i. LP = 1 2 ||β||2 + γ

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档