Discriminative Training of Subspace Gaussian Mixture.pdf

Discriminative Training of Subspace Gaussian Mixture.pdf

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Discriminative Training of Subspace Gaussian Mixture

D.-S. Huang et al. (Eds.): ICIC 2010, LNCS 6215, pp. 213–221, 2010. ? Springer-Verlag Berlin Heidelberg 2010 Discriminative Training of Subspace Gaussian Mixture Model for Pattern Classification Xiao-Hua Liu and Cheng-Lin Liu National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences 95 Zhongguancun East Road, Beijing 100190, P.R. China {xhliu,liucl}@ Abstract. The Gaussian mixture model (GMM) has been widely used in pattern recognition problems for clustering and probability density estimation. For pat- tern classification, however, the GMM has to consider two issues: model struc- ture in high-dimensional space and discriminative training for optimizing the decision boundary. In this paper, we propose a classification method using subspace GMM density model and discriminative training. During discrimina- tive training under the minimum classification error (MCE) criterion, both the GMM parameters and the subspace parameters are optimized discriminatively. Our experimental results on the MNIST handwritten digit data and UCI datasets demonstrate the superior classification performance of the proposed method. Keywords: Subspace GMM, EM algorithm, Discriminative training, MCE. 1 Introduction The Gaussian mixture model (GMM) is widely used in pattern recognition problems for clustering, probability density estimation and classification. Many methods have been proposed for GMM parameter estimation and model selection (e.g. [1][2]). De- spite the capability of GMM to approximate arbitrary distributions, the precise density estimation requires a large number of training samples, especially in high-dimensional space (say, dimensionality over 20). Researchers have proposed structure-constrained GMMs for high-dimensional data, such as diagonal covariance, tied covariance, semi-tied covariance [3], and GMM in subspace [4-5]. On the other hand, the GMM is a generative model, with parameters estimated for

您可能关注的文档

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档