- 1、本文档共9页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Discriminative Training of Subspace Gaussian Mixture
D.-S. Huang et al. (Eds.): ICIC 2010, LNCS 6215, pp. 213–221, 2010.
? Springer-Verlag Berlin Heidelberg 2010
Discriminative Training of Subspace Gaussian Mixture
Model for Pattern Classification
Xiao-Hua Liu and Cheng-Lin Liu
National Laboratory of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of Sciences
95 Zhongguancun East Road, Beijing 100190, P.R. China
{xhliu,liucl}@
Abstract. The Gaussian mixture model (GMM) has been widely used in pattern
recognition problems for clustering and probability density estimation. For pat-
tern classification, however, the GMM has to consider two issues: model struc-
ture in high-dimensional space and discriminative training for optimizing the
decision boundary. In this paper, we propose a classification method using
subspace GMM density model and discriminative training. During discrimina-
tive training under the minimum classification error (MCE) criterion, both the
GMM parameters and the subspace parameters are optimized discriminatively.
Our experimental results on the MNIST handwritten digit data and UCI datasets
demonstrate the superior classification performance of the proposed method.
Keywords: Subspace GMM, EM algorithm, Discriminative training, MCE.
1 Introduction
The Gaussian mixture model (GMM) is widely used in pattern recognition problems
for clustering, probability density estimation and classification. Many methods have
been proposed for GMM parameter estimation and model selection (e.g. [1][2]). De-
spite the capability of GMM to approximate arbitrary distributions, the precise density
estimation requires a large number of training samples, especially in high-dimensional
space (say, dimensionality over 20). Researchers have proposed structure-constrained
GMMs for high-dimensional data, such as diagonal covariance, tied covariance,
semi-tied covariance [3], and GMM in subspace [4-5]. On the other hand, the GMM is
a generative model, with parameters estimated for
您可能关注的文档
- Creep behaviors and effect factors of single crystal nickel-base superalloys.pdf
- Creep life assessment of high chromium ferritic steels by recovery of martensitic lath structure.pdf
- Creep modeling for concrete-filled steel tubes.pdf
- Creep, recovery, and waves in a nonlinear fiber-reinforced viscoelastic solid.pdf
- Creep Suplement.ppt
- Creep behavior and rupture life of the simulated intercritical HAZ for 1.25Cr-0.5Mo steel under a mu.pdf
- Cressi Leonador 中文手册 - 潜客网整理.pdf
- Creme L.X - Intensive training 时光面霜.pdf
- CRISPR nature protocol.pdf
- Cretaceous extension of the Ganhang Tectonic Belt, southeast China.pdf
- 企业竞争图谱:2024年ADAS高级驾驶辅助系统 头豹词条报告系列.pdf
- 跨境电商平台出海目的地(Europe):出海四小龙加速布局,市场热度持续上升 头豹词条报告系列.pdf
- 中国智慧导览行业市场规模测算逻辑模型 头豹词条报告系列.pdf
- 两项货币政策工具落地,支持资本市场决心超预期必威体育精装版完整版本.pdf
- 农林牧渔行业定期报告:猪价震荡调整,肥标价差继续走扩.pdf
- 卡牌行业专题报告:热潮背后的IP效应与市场潜力.pdf
- 食品饮料行业深度研究:白酒调整期复盘:估值拐点隐现,期待需求传导.pdf
- 家用电器行业专题研究:当前时点如何看家电?必威体育精装版完整版本.pdf
- 医药生物行业报告:医疗设备以旧换新政策步入落地阶段,板块业绩有望迎来拐点向上.pdf
- 煤炭开采行业动态研究:原煤日产量环比提升,火力发电加速.pdf
文档评论(0)