Discovering Multivariate Motifs using Subsequence Density Estimation and Greedy Mixture Lea.pdf
- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Discovering Multivariate Motifs using Subsequence Density Estimation and Greedy Mixture Lea
Discovering Multivariate Motifs using Subsequence Density Estimation and
Greedy Mixture Learning
David Minnen and Charles L. Isbell and Irfan Essa and Thad Starner
Georgia Institute of Technology
College of Computing / School of Interactive Computing
Atlanta, GA 30332-0760 USA
{dminn,isbell,irfan,thad}@
Abstract
The problem of locating motifs in real-valued, multivariate
time series data involves the discovery of sets of recurring
patterns embedded in the time series. Each set is composed of
several non-overlapping subsequences and constitutes a mo-
tif because all of the included subsequences are similar. The
ability to automatically discover such motifs allows intelli-
gent systems to form endogenously meaningful representa-
tions of their environment through unsupervised sensor anal-
ysis. In this paper, we formulate a unifying view of motif
discovery as a problem of locating regions of high density
in the space of all time series subsequences. Our approach
is efficient (sub-quadratic in the length of the data), requires
fewer user-specified parameters than previous methods, and
naturally allows variable length motif occurrences and non-
linear temporal warping. We evaluate the performance of our
approach using four data sets from different domains includ-
ing on-body inertial sensors and speech.
Introduction
Our goal is to develop intelligent systems that understand
their environment by autonomously learning new concepts
from their perceptions. In this paper, we address one form
of this problem where the concepts correspond to recur-
ring patterns in the sensory data captured by the intelligent
agent. Such recurring patterns are often referred to as per-
ceptual primitives ormotifs and correspond to sets of similar
subsequences in the time-varying sensor data. For exam-
ple, a motif discovery system could find unknown words or
phonemes in speech data, learn common gestures in video
of sign language, or allow a mobile robot to learn endonge-
nously meaningful rep
您可能关注的文档
- Creep rupture of viscoelastic fiber bundles.pdf
- CPI Company Profile(公司简介).pdf
- Creep behaviors and effect factors of single crystal nickel-base superalloys.pdf
- Creep life assessment of high chromium ferritic steels by recovery of martensitic lath structure.pdf
- Creep modeling for concrete-filled steel tubes.pdf
- Creep, recovery, and waves in a nonlinear fiber-reinforced viscoelastic solid.pdf
- Creep Suplement.ppt
- Creep behavior and rupture life of the simulated intercritical HAZ for 1.25Cr-0.5Mo steel under a mu.pdf
- Cressi Leonador 中文手册 - 潜客网整理.pdf
- Creme L.X - Intensive training 时光面霜.pdf
最近下载
- 民航服务心理学理论、案例与实训-PPT课件(全).pptx
- 2023年东北林业大学软件工程专业《计算机网络》科目期末试卷A(有答案).docx VIP
- 车辆油卡统计表.xls VIP
- 湖南省雅礼教育集团2022-2023学年八年级上学期期中考试历史试题(含答案).docx VIP
- 公共卫生与预防医学继续教育平台“大学习”活动线上培训栏目题及答案.doc VIP
- 北师大版(2019)高中英语选择性必修第一册 Unit 1 Writing Workshop An Invitation Letter 教学课件.pptx
- 网点阵地营销与岗位联动营销技巧.ppt
- DG_TJ08-2095-2023公路技术状况评定标准.pdf
- 抽水蓄能电站设备检修预算编制规定与计算标准(试行).pdf
- 电力调度安全培训.pptx
文档评论(0)