Analysis of mixture models using expected posterior priors, with application to classificat.pdf

Analysis of mixture models using expected posterior priors, with application to classificat.pdf

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Analysis of mixture models using expected posterior priors, with application to classificat

Analysis of Mixture Models Using Expected Posterior Priors, with Application to Classification of Gamma Ray Bursts JOSE M. PEREZ and JAMES O. BERGER Universidad Simon Bolivar, Venezuela and Duke University, USA Abstract: Consider observations distributed according to a mixture of compo- nent densities with different parameters. In the Bayesian framework, it is not possible to perform a  statistical analysis of the mixture using an improper prior for the component parameters, since the posterior distribution does not ex- ist. To overcome this difficulty, we propose use of the expected posterior prior approach of Perez and Berger (1999). Besides providing suitable default priors for general mixture models, a key advantage of the use of expected posterior priors is that they can be used in conjunction with Markov Chain Monte Carlo methods, even when the number of components is unknown. An application is considered involving Gamma Ray Bursts, modeled as arising from a bivariate normal mixture model with measurement errors on the observations. Keywords: MIXTURE MODELS; DEFAULT PRIORS; CLASSIFICATION; MCMC. 1. INTRODUCTION Mixture models have been used in situations including pseudo-parametric density estima- tion, clustering, change point problems and image analysis (McLachlan and Basford, 1985; Escobar and West, 1995; Roeder and Wasserman, 1997). In Bayesian analysis, mixture models are typically analyzed using Markov Chain Monte Carlo simulation (MCMC). See, for example, Diebolt and Robert (1994), Escobar and West (1995) and Richardson and Green (1998). Unfortunately, with mixture models it is typically not possible to perform default anal- ysis with standard noninformative priors. In this work, we demonstrate that the expected posterior prior approach (Perez and Berger, 1999) can be used to provide a default Bayesian analysis for this problem. In section 2, we define the expected posterior prior for mixture models. In section 3, a reversible jump MCMC sch

文档评论(0)

l215322 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档