A unified neural network model for the self-organization of topographic receptive fields an.pdf
- 1、本文档共8页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
A unified neural network model for the self-organization of topographic receptive fields an
A Unied Neural Network Model for the Self-organization ofTopographic Receptive Fields and Lateral InteractionJoseph Sirosh and Risto MiikkulainenDepartment of Computer SciencesThe University of Texas at Austin, Austin, TX 78712email: sirosh,risto@cs.utexas.eduTechnical Report AI94-213January 1994AbstractA self-organizing neural network model for the simultaneous development of topographic receptive eldsand lateral interactions in cortical maps is presented. Both aerent and lateral connections adapt by thesame Hebbian mechanism in a purely local and unsupervised learning process. Aerent input weights of eachneuron self-organize into hill-shaped proles, receptive elds organize topographically across the network, andunique lateral interaction proles develop for each neuron. The resulting self-organized structure remains ina dynamic and continuously-adapting equilibrium with the input. The model can be seen as a generalizationof previous self-organizing models of the visual cortex, and provides a general computational frameworkfor experiments on receptive eld development and cortical plasticity. The model also serves to point outgeneral limits on activity-dependent self-organization: when multiple inputs are presented simultaneously,the receptive eld centers need to be initially ordered for stable self-organization to occur.1 IntroductionThe response properties of neurons in many sensory cortical areas are ordered topographically, i.e. nearbyneurons respond to nearby areas of the receptor surface. Such topographic maps form by the self-organizationof aerent connections to the cortex, driven by external input (Hubel and Wiesel 1965; Miller et al. 1989;Stryker et al. 1988; von der Malsburg 1973). Several neural network models (Amari 1980; Kohonen 1982;Miikkulainen 1991; Willshaw and von der Malsburg 1976) have demonstrated how the global topographicorder can emerge from local cooperative and competitive lateral interactions within the cortex. Such modelsare base
您可能关注的文档
- 50句通俗易懂的托福口语谚语-智课教育旗下智课教育.pdf
- 556371-2650mAh.pdf
- 5个虹鳟(Oncorhynchus mykiss)群体的生化遗传分析.pdf.pdf
- 586660_v3 ALARMS AND FAULT FINDING.pdf
- 54200中文使用说明书.pdf
- 5600交换机命令手册.do.pdf
- 570个六级高频核心词汇【单词达人王鑫2012词汇大礼包】.pdf
- 5v 3.3 1.2 1.5 1.8 2.5V稳压电源芯片大全.pdf
- 5分钟即刻剖腹产细则.pdf
- 6 - UNSD - Tourism in the macroeconomic framework.pdf
最近下载
- 商业物业的管理.ppt
- 2023-2024学年六年级上册道德与法治期中测试卷及答案(考点梳理).pdf VIP
- 《餐饮服务与管理》试题库.pdf VIP
- 2022年中国劳动关系学院公开招聘《综合能力》考试真题(含答案).pdf VIP
- 04S531-3 湿陷性黄土地区给水排水检漏井_标准图集.pdf
- 幼儿园秋冬传染病预防.pptx VIP
- 多层次数据要素市场交易体系的形成与发展 2023.pptx
- 《仿生机器人介绍》PPT课件ppt.pptx VIP
- 北师大版小学数学二年级上册 第五单元 2~5的乘法口诀 大单元学历案 教学设计附双减作业设计(基于新课标教学评一体化).docx
- 中职英语1基础模块(修订版)课件英语1 基础模块(修订版) Unit 8 电子课件.pptx
文档评论(0)