- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
双因素方差分析 一、双因素方差分析的含义和类型 (一)双因素方差分析的含义和内容 在实际问题的研究中,有时需要考虑两个因素对实验结果的影响。例如上一节中饮料销售量的例子,除了关心饮料颜色之外,我们还想了解销售地区是否影响销售量,如果在不同的地区,销售量存在显著的差异,就需要分析原因,采用不同的推销策略,使该饮料品牌在市场占有率高的地区继续深入人心,保持领先地位,在市场占有率低的地区,进一步扩大宣传,让更多的消费者了解,接受该产品。 在方差分析中,若把饮料的颜色看作影响销售量的因素A,饮料的销售地区看作影响因素B。同时对因素A和因素B进行分析,就称为双因素方差分析。 双因素方差分析的内容包括:对影响因素进行检验,究竟一个因素在起作用,还是 两个因素都起作用,或是两个因素的影响都不显著。 双因素方差分析的前提假定:采样地随机性,样本的独立性,分布的正态性,残差方差的一致性。 (二)双因素方差分析的类型 双因素方差分析有两种类型:一个是无交互作用的双因素方差分析,它假定因素A和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景;否则,就是无交互作用的背景。有交互作用的双因素方差分析已超出本书的范围,这里介绍无交互作用的双因素方差分析。 1.无交互作用的双因素方差分析。 无交互作用的双因素方差分析是假定因素A和因素B的效应之间是相互独立的,不存在相互关系; 2.有交互作用的双因素方差分析。 有交互作用的双因素方差分析是假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种颜色有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景,否则,就是无交互作用的背景。 二、数据结构 方差分析的基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。 下面用一个简单的例子来说明方差分析的基本思想: 如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下: 患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11 健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87 问该地克山病患者与健康人的血磷值是否不同? 从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源: 组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等; 组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。 而且:SS总=SS组间+SS组内 v总=v组间+v组内 如果用均方(即自由度v去除离均差平方和的商)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较,若F值接近1,则说明各组均数间的差异没有统计学意义,若F值远大于1,则说明各组均数间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。 因素A位于列的位置,共有r个水平, 表示第j种水平的样本平均数; 因素B位于行的位置,共有k个水平, 表示第I种水平的样本平均数。 为样本总平均数 样本容量为 n = r x k 。 每一个观察值xij是由因素A的r个水平和因素B的k个水平所组成的总体中抽取的样本容量为1的独立随机样本。 在进行双因素方差分析时,假定在个总体中,每一个总体都服从正态分布,而且有相同的方差。 三、离差平方和的分解 与单因素方差分析相类似,进行双因素方差分析时也需要将总离差平方和SST进行分解。但不同的是,这里需要将SST分解成三个组成部分:即 SSA:反映因素A的组间差异 SSB:反映因素B的组间差异 SSE:随机误差的离散状况 它们的计算公式分别为: (1) (2) (3) SSE = SST – SSA – SSB (4) 双因素方差分析表如下: 例题:某商品有五种不同的包装方式,在五个不同地区销售。现从每个地区随机抽取一个规模相同的超级市场,得到该商品不同包装的销售资料如表7-9所示。 试问,包装方式和销售地区对该商品销售量是否有显著影响(α= 0.05)
文档评论(0)