Chapter4ModelAdequacyChecking.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Chapter4ModelAdequacyChecking

Chapter 4 Model Adequacy Checking;4.1 Introduction;Gross violations of the assumptions may yield an unstable model with opposite conclusions. The standard summary statistics: t-; F- statistics and R2 can not detect the departures from the underlying assumptions. Based on the study of the model residuals.;4.2 Residual Analysis;Properties: ;4.2.2 Methods for Scaling Residuals Scaling Residuals is helpful in detecting the outliers or extreme values. Standardized Residuals:;Studentized Residuals: The residual vector: e=(I-H)y, where H=X(X’X)-1X’ is the hat matrix. Since H is symmetric and idempotent, (I-H) is also symmetric and idempotent. Then;Hence Var(ei) = ?2(1-hii) Cov(ei, ej) = -?2hij Studentized residuals: ;ri di Constant variance, Var(ri) = 1 ri and di may be little difference and often convey equivalent information. PRESS Residuals: The prediction error (PRESS residuals) is the fitted value of the ith response based on all observations except the ith one. From Appendix C7, ;The variance of the ith PRESS residual is A standardized PRESS residual: A studentized PRESS residual: ;R-Student: Estimate variance based on a data set with the ith observation removed. From Appendix C.8, R-student If the ith observation is influential, then can differ significantly from MSRes , and thus R-student statistic will be more sensitive to this point.;Example 4.1 The Delivery Time Data See Table 4.1 ;4.2.3 Residual Plot Graphical analysis is a very effective way to investigate the adequacy of the fit of a regression model and to check the underlying assumption. Normal Probability Plot: If the errors come from a distribution with thicker or heavier tails than the normal, LS fit may be sensitive to a small subset of the data. Heavy-tailed error distributions often generate outliers that “pull” LS fit too much in their direction.;Normal probability plot: a simple way to check the normal assumption. Ranked residuals: e[1] … e[n] Plot e[i] against Pi = (i-1/2

文档评论(0)

***** + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8016031115000003

1亿VIP精品文档

相关文档