- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
A Topic-Motion Model for Unsupervised Video Object Discovery
A Topic-Motion Model for Unsupervised Video Object Discovery
David Liu and Tsuhan Chen
Department of Electrical and Computer Engineering
Carnegie Mellon University
/projects/DISCOV
Abstract
The bag-of-words representation has attracted a lot of
attention recently in the field of object recognition. Based
on the bag-of-words representation, topic models such as
Probabilistic Latent Semantic Analysis (PLSA) have been
applied to unsupervised object discovery in still images.
In this paper, we extend topic models from still images to
motion videos with the integration of a temporal model.
We propose a novel spatial-temporal framework that uses
topic models for appearance modeling, and the Probabilis-
tic Data Association (PDA) filter for motion modeling. The
spatial and temporal models are tightly integrated so that
motion ambiguities can be resolved by appearance, and ap-
pearance ambiguities can be resolved by motion. We show
promising results that cannot be achieved by appearance or
motion modeling alone.
1. Introduction
Discovering objects in video is a challenging task. By
discovering, we mean that the object can be a person, a car,
or a building. Without having any prior knowledge about
the object type or its position, we would like to identify an
object from a video that occurs over a period of time. This is
particularly challenging when the image sequence has low
resolution and consists of highly cluttered background. This
is not easily achieved by directly applying motion-based or
unsupervised appearance-based methods in literature; see
Figure 1.
Some methods observe the same scene over a long time
and build a color distribution model for each pixel [25] [11]
[19]. Unusual objects can then be identified if some pix-
els observe substantial deviation from their long-term color
distribution models. These kind of background modeling
approaches are suitable for video surveillance with a static
camera, but if an image sequence is obtained from a mov-
ing camera, the
您可能关注的文档
- 3.BETAFENCE 机场安全围界1.pdf
- 31Open-Economy Macroeconomics_Basic Concepts.pdf
- 3200nt timer 中文说明书.pdf
- 30天冲刺雅思大作文高分计划之DAY 18 保护老建筑-智课教育出国考试.pdf
- 365句ENGLISH.pdf
- 33-lesson 35.ppt
- 3300 ELSD ChemStationB.03DriverV04108 Instructions.pdf
- 3535RGB全彩led规格书.pdf
- 3M_8426_11_Cold_Shrink_Tube_(EPDM_Rubber).pdf
- 3步打造优雅美女酷感妆容.pdf
- A Twisted-Bundle Layout Structure for Minimizing Inductive Coupling Noise.pdf
- A Two Stage Approach to Solve Constraint Satisfaction Problem.pdf
- A two-dimensional low-frequency vibration attenuator using X-pendulums.pdf
- A two-stage algorithm with valid inequalities for the split delivery vehicle routing problem.pdf
- A unified picture for gamma-ray burst prompt and X-ray afterglow emissions.pdf
- A versatile wavelet domain noise filtration technique for medical imaging.pdf
- A VHF PECVD Micro-Crystalline Silicon Bottom Gate TFT with a Thin Incubation Layer.pdf
- A Visit to the Statue of Liberty.pdf
- A Wide-angle View of Communication.ppt
- A Visual Comparison Between Chinese and Western Cultures-student.doc
最近下载
- 道法开学第一课(二年级).pptx VIP
- 电业安全工作规程热力和机械部分但g义b261641—2010.doc VIP
- (高清版)B 26164.1-2010 电业安全工作规程 第1部分:热力和机械.pdf VIP
- 水利工程监理资料目录.xls VIP
- 国企混改项目商业计划书.docx VIP
- CityGML全部实体类型总结(中英文对照).docx VIP
- JT_T 1432.1 2022 公路工程土工合成材料 第1部分:土工格栅.pdf VIP
- 2020年全国普通高等学校体育单招真题英语试卷(原卷+解析).docx VIP
- 2025年全国普通高等学校体育单招真题英语试卷完整版 .pdf VIP
- 2025年全国普通高等学校体育单招真题英语试卷(原卷) .pdf VIP
文档评论(0)