A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundla.pdfVIP

A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundla.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundla

A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland S. Labrecque a, R.A. Fournier a,*, J.E. Luther b, D. Piercey b a Centre d’Applications et de Recherches en Te?le?de?tection (CARTEL), Universite? de Sherbrooke, 2500 boul. de l’Universite?, Sherbrooke, Que?., Canada J1K 2R1 b Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, P.O. Box 960, Corner Brook, Newfoundland and Labrador, Canada A2H 6J3 Received 6 July 2005; received in revised form 20 January 2006; accepted 21 January 2006 Abstract Spatial measures of forest biomass are important to implement sustainable forest management, monitor global change, and model forest productivity. Several methods for estimating forest biomass by remote sensing have been developed, but their comparative advantages have not been evaluated for large areas in Canada. This study compares four methods to map forest biomass on an extended pilot region (20,000 km2) located in western Newfoundland. The methods include: (i) Direct Radiometric Relationships (DRR), (ii) k-Nearest Neighbors (k-NN), (iii) Land Cover Classification (LCC), and (iv) Biomass from Cluster Labeling Using Structure and Type (BioCLUST). The results of each method were evaluated using an independent set of ground survey plots and compared with a baseline biomass map generated from biomass tables applied to forest inventory stand maps. Considering the root mean square error (RMSE) assessed with the inventory plots, the DRR, k-NN, and BioCLUST methods provided similar results, with average RMSE values of 59, 59, and 58 t/ha, respectively. Bias values were lowest for the k-NN method followed by DRR, BioCLUST, and LCC (6, 8, 17, and 42 t/ha, respectively). Assessed with the baseline map, the BioCLUST method produced the lowest RMSE (41 t/ha) and bias (4 t/ha) followed by the DRR and k-NN methods, with RMSE values of 47 and 54 t/ha and bias values of 9 and 23 t/ha, respectively. The method usin

文档评论(0)

l215322 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档