人工智能教学资料 Classification by Weka.pdfVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Artificial intelligence report Group Number: 38 1.Specification Our group choose to complete the project which is implementing a classification model based on the decision tree. The method that we used is Weka. However, because we have not learned much about the AI, what we can do is just analyzing the different decision tree algorithm with different data set. 2.Experiment 2.1 Data Set We choose three data sets to analyze the decision tree algorithm and the information about these data sets are show on the table below: Table 1. Data set Data set Instances Attributes weather.normal 14 5 Glass 214 10 german-credit 1000 21 As we can see that, the instances and attributes of each data set are both increasing. The reason why we choose these data sets is that we want to find the performance of different decison tree based on various data sets. 2.2 Decision tree algorithm In the project, we choose two classical algorithm that the teacher introduced in the class, that is the J48(C4.5) and SimpleCar(CART).Here we cannot use the ID3 algorithm, because the data set we used is continuous, the ID3 which can only used for discrete data. Now let’s take a simple look to these algorithm. 2.2.1 J48(C4.5) J48 is an improvement of ID3,which used the information gain radio to construct the decision tree, but not the information gain used in ID3. Suppose the data set is S and A is the attribute. The split information is: The information gain ratio is: The attribute which provides the largest information gain ratio is chosen to split the node. The J48(C4.5) can not only used for discrete data, but also the continuous data. 2.2.2 SimpleCar(CART) CART algorithm split each sub data set into two parts, so the CART decision tree is a binary tree. The CART algorithm used gini index to construct the decision tree. If a data set D contains examples from n classes, gini index, gini(D) is defined as: If a data set D is split

文档评论(0)

1243595614 + 关注
实名认证
文档贡献者

文档有任何问题,请私信留言,会第一时间解决。

版权声明书
用户编号:7043023136000000

1亿VIP精品文档

相关文档