人工智能教学资料 Project Progress Report.pdfVIP

人工智能教学资料 Project Progress Report.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Project Progress Report Group Members 黄文楷 黄少墅 谢敏 查娟 李正 Introduction We intent to realize automatic divisive hierarchical clustering method, DIVFRP for short. Its basic idea is to bipartition clusters repeatedly with a novel dissimilarity measure based on furthest reference points. A sliding average of sum-of-error is employed to estimate the cluster number preliminarily, and the optimum number of clusters is achieved after spurious clusters identified. We have already implemented the full algorithm. Next step, our task is to test and evaluate DIVFRP through practical data sets. Algorithm Evaluation Advantage: 1. Doesn’t require any user-specified parameter. Most traditional clustering methods, such as K-means, DBScan, require some user-specified parameters. Generally, however, the required parameters are hard to specify and influence heavily to the performance of algorithm. 2. Lower computational cost. DIVFRP employs furthest reference points to bipartition a cluster optimally, and does not need to consider the complete enumeration of all possible bipartitions. For a data set with N objects, the computational cost of DIVFRP is lower than that of single-linkage O (N2log N). Because in DIVFRP, totally there are N -1 bipartitions after every object becomes a cluster, and the computational cost of each bipartition is O (nilog ni), where ni is the object number of a cluster to bipartition and it is less than N except the first bipartition in which ni is N. 3. Support the requirement of the number of clusters as an input from users. Some clustering methods, such as K-means, need number of clusters as an input from users. Well, DIVFRP can help to find the best number of clusters. 4. Robust to outliers. The presence of outliers may deteriorate the result of a clustering method. For this kind of clustering methods, some outlier detection mechanisms can be employed to remove the ou

文档评论(0)

1243595614 + 关注
实名认证
文档贡献者

文档有任何问题,请私信留言,会第一时间解决。

版权声明书
用户编号:7043023136000000

1亿VIP精品文档

相关文档