人工智能教学资料 4ai Classification part2.pdfVIP

人工智能教学资料 4ai Classification part2.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Artificial Intelligence Classification Yanghui Rao Assistant Prof., Ph.D School of Mobile Information Engineering, Sun Yat-sen University Artificial Intelligence: Classification Evaluation Metrics ? Precision – P; Recall – R ? P = a/(a+b) ? R = a/(a+c) ? F-Measure Human True False Classifier Yes a b No c d 1 1 1 1 (1 ) 2 F P R PR F P R ? ? ? ? ? ? ? Artificial Intelligence: Classification Na?ve Bayesian Classifier ? A statistical classifier ? Based on Bayes’ Theorem to perform probabilistic prediction, i.e., predict class membership probabilities ? Assumption ? The effect of an attribute on a given class is independent of other attributes ? Performance ? Comparable with decision trees and selected neural network classifiers Artificial Intelligence: Classification Na?ve Bayesian Classifier ? Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector X = (x1, x2, …, xn) ? Suppose there are m classes, i.e., C1, C2, …, Cm. ? Na?ve Bayesian Classifier is to derive the maximum posteriori, i.e., the maximal P(Ci|X) Artificial Intelligence: Classification Na?ve Bayesian Classifier ? This can be derived from Bayes’ theorem ? Since P(X) is constant for all classes, only needs to be maximized ? P(Ci) can be obtained from training data set si/s ( | ) ( ) ( | ) ( ) i i i P C P C P C P ? X X X ( | ) ( | ) ( )i i iP C P C P C?X X Artificial Intelligence: Classification Derivation ? Assumption: attributes are conditionally independent (i.e., no dependence relation between attributes): ? This greatly reduces the computation cost: Only counts the class distribution ? If Ak is categorical, P(xk|Ci) = sik/si, count the distribution ? If Ak is continuous-valued, P(xk|Ci) can be computed based on Gaussian distribution 1 ( | ) ( | ) n i k i k P C P x C ? ??X Artificial Intelligence: Classification Example Artificial Intelligence: Classification Comments ? Advantages ? Easy to implement ? Good results obtained in most of th

文档评论(0)

1243595614 + 关注
实名认证
文档贡献者

文档有任何问题,请私信留言,会第一时间解决。

版权声明书
用户编号:7043023136000000

1亿VIP精品文档

相关文档