- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation
Technical Report No. 9508, Department of Statistics, University of TorontoSuppressing Random Walks in Markov ChainMonte Carlo Using Ordered OverrelaxationRadford M. NealDept. of Statistics and Dept. of Computer ScienceUniversity of TorontoToronto, Ontario, CanadaWorld Wide Web: /radfordE-mail: radford@21 June 1995Markov chain Monte Carlo methods such as Gibbs sampling and simple forms of theMetropolis algorithm typically move about the distribution being sampled via a ran-dom walk. For the complex, high-dimensional distributions commonly encountered inBayesian inference and statistical physics, the distance moved in each iteration of thesealgorithms will usually be small, because it is dicult or impossible to transform theproblem to eliminate dependencies between variables. The ineciency inherent in takingsuch small steps is greatly exacerbated when the algorithm operates via a random walk,as in such a case moving to a point n steps away will typically take around n2 itera-tions. Such random walks can sometimes be suppressed using \overrelaxed variants ofGibbs sampling (a.k.a. the heatbath algorithm), but such methods have hitherto beenlargely restricted to problems where all the full conditional distributions are Gaussian.I present an overrelaxed Markov chain Monte Carlo algorithm based on order statisticsthat is more widely applicable. In particular, the algorithm can be applied whenever thefull conditional distributions are such that their cumulative distribution functions andinverse cumulative distribution functions can be eciently computed. The method isdemonstrated on an inference problem for a simple hierarchical Bayesian model. 1 1 IntroductionMarkov chain Monte Carlo methods are used to estimate the expectations of variousfunctions of a state, x = (x1; . . . ; xN), with respect to a distribution given by somedensity function, (x). Typically, the dimensionality, N , is large, and the density (x) isof a complex form, in which the components of x are hig
您可能关注的文档
- Screening of short- and medium-chain chlorinated paraffins in.pdf
- Screenings and a universal Lie-de Rham cocycle.pdf
- scrollLeft,scrollTop等等详解.pdf
- SCR数据集在胸透中的细胞分割(SCR database Segmentation in Chest Radiographs).pdf
- Scientific Reports_4_6157_spin carbon chain.pdf
- SD2 [兼容模式].pdf
- SDX300 业务部署系统.pdf
- SEAN for Modeling and Simulating ATM Signaling.pdf
- Search For Non-Standard Model CPT violation At Tau-Charm Factory.pdf
- Secret Broadcasting of W-type state.pdf
- Surfer11 教程05_散点图数据点和图形图层的使用.pdf
- Surgical management of facial paralysis resulting from temporal bone.pdf
- Supply Chain Perspective Volume 10 Issue 1.pdf
- Survey on typology, PRPs and HACCP plan in dry fermented sausage sector of Northern Italy.pdf
- Sustainable Aesthetics of the Pathological Instant.pdf
- Sustainable Utilization and Economic Development of Some Plant Resources in Northern Pakist.pdf
- SVG_Path_解析.doc
- Suzaku Observations of the Centaurus Cluster Absence of Bulk Motions in the Intracluster Me.pdf
- svhc supdoc anthracene publication.pdf
- SWAT模型发展与应用研究进展_田彦杰.pdf
文档评论(0)